Cell size as a key determinant of phytoplankton metabolism and community structure.

Phytoplankton size structure controls the trophic organization of planktonic communities and their ability to export biogenic materials toward the ocean's interior. Our understanding of the mechanisms that drive the variability in phytoplankton size structure has been shaped by the assumption that the pace of metabolism decreases allometrically with increasing cell size. However, recent field and laboratory evidence indicates that biomass-specific production and growth rates are similar in both small and large cells but peak at intermediate cell sizes. The maximum nutrient uptake rate scales isometrically with cell volume and superisometrically with the minimum nutrient quota. The unimodal size scaling of phytoplankton growth arises from ataxonomic, size-dependent trade-off processes related to nutrient requirement, acquisition, and use. The superior ability of intermediate-size cells to exploit high nutrient concentrations explains their biomass dominance during blooms. Biogeographic patterns in phytoplankton size structure and growth rate are independent of temperature and driven mainly by changes in resource supply.

[1]  E. Marañón,et al.  Photosynthesis and respiration in marine phytoplankton: Relationship with cell size, taxonomic affiliation, and growth phase , 2014 .

[2]  Emilio Marañón,et al.  Resource Supply Overrides Temperature as a Controlling Factor of Marine Phytoplankton Growth , 2014, PloS one.

[3]  E. Boss,et al.  Resurrecting the ecological underpinnings of ocean plankton blooms. , 2014, Annual review of marine science.

[4]  M. Follows,et al.  Modelling spatial and temporal patterns in size-structured marine plankton communities: top -down and bottom -up controls , 2014 .

[5]  U. Sommer,et al.  Phytoplankton Cell Size Reduction in Response to Warming Mediated by Nutrient Limitation , 2013, PloS one.

[6]  K. Arrigo,et al.  Processes and patterns of oceanic nutrient limitation , 2013 .

[7]  A. Calbet,et al.  Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions , 2013 .

[8]  A. D. Barton,et al.  The biogeography of marine plankton traits. , 2013, Ecology letters.

[9]  E. Marañón,et al.  Exudation of organic carbon by marine phytoplankton: Dependence on taxon and cell size , 2013 .

[10]  Emilio Marañón,et al.  Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. , 2013, Ecology letters.

[11]  E. Laws Evaluation of in situ phytoplankton growth rates: a synthesis of data from varied approaches. , 2013, Annual review of marine science.

[12]  G. Gong,et al.  Scaling of growth rate and mortality with size and its consequence on size spectra of natural microphytoplankton assemblages in the East China Sea , 2012 .

[13]  D. Atkinson,et al.  Warming-induced reductions in body size are greater in aquatic than terrestrial species , 2012, Proceedings of the National Academy of Sciences.

[14]  Stephanie Dutkiewicz,et al.  A size‐structured food‐web model for the global ocean , 2012 .

[15]  E. Marañón,et al.  Temperature, resources, and phytoplankton size structure in the ocean , 2012 .

[16]  M. Brzezinski,et al.  Summer Diatom Blooms in the North Pacific Subtropical Gyre: 2008–2009 , 2012, PloS one.

[17]  Mridul K. Thomas,et al.  Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton , 2012 .

[18]  C. Jiggins,et al.  Supplementary data References , 2010 .

[19]  C. Duarte,et al.  Distribution and contribution of major phytoplankton groups to carbon cycling across contrasting conditions of the subtropical northeast Atlantic Ocean , 2011 .

[20]  K. Wirtz Non-uniform scaling in phytoplankton growth rate due to intracellular light and CO2 decline , 2011 .

[21]  P. Falkowski,et al.  Competitive dynamics in two species of marine phytoplankton under non-equilibrium conditions , 2011 .

[22]  G. Woodward,et al.  Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems , 2011 .

[23]  F. G. Figueiras,et al.  Microzooplankton feeding impact in a coastal upwelling system on the NW Iberian margin: The Ría de Vigo , 2011 .

[24]  Stephanie Dutkiewicz,et al.  Modeling diverse communities of marine microbes. , 2011, Annual review of marine science.

[25]  Melanie E. Moses,et al.  Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life , 2010, Proceedings of the National Academy of Sciences.

[26]  R. Tadonléké,et al.  Evidence of warming effects on phytoplankton productivity rates and their dependence on eutrophication status , 2010 .

[27]  Hongbin Liu,et al.  Relationships between phytoplankton growth and cell size in surface oceans: Interactive effects of temperature, nutrients, and grazing , 2010 .

[28]  Eric J. Deeds,et al.  Curvature in metabolic scaling , 2010, Nature.

[29]  A. Lopez-Urrutia,et al.  Increasing importance of small phytoplankton in a warmer ocean , 2010 .

[30]  P. Franks,et al.  Size-structured planktonic ecosystems: constraints, controls and assembly instructions , 2010, Journal of plankton research.

[31]  Zoe V. Finkel,et al.  Phytoplankton in a changing world: cell size and elemental stoichiometry , 2010 .

[32]  E. Marañón,et al.  General patterns in the size scaling of phytoplankton abundance in coastal waters during a 10-year time series. , 2010 .

[33]  E. Sherr,et al.  Capacity of herbivorous protists to control initiation and development of mass phytoplankton blooms , 2009 .

[34]  George A. Jackson,et al.  Effects of phytoplankton community on production, size, and export of large aggregates: A world‐ocean analysis , 2009 .

[35]  Scott C. Doney,et al.  Projected 21st century decrease in marine productivity: a multi-model analysis , 2009 .

[36]  U. Sommer,et al.  Global warming benefits the small in aquatic ecosystems , 2009, Proceedings of the National Academy of Sciences.

[37]  M. Piehler,et al.  Warming and Resource Availability Shift Food Web Structure and Metabolism , 2009, PLoS biology.

[38]  Elena Litchman,et al.  Trait-Based Community Ecology of Phytoplankton , 2008 .

[39]  M. I. Wallace,et al.  Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. , 2008 .

[40]  U. Sommer,et al.  Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom , 2008 .

[41]  F. G. Figueiras,et al.  Species richness and cell-size distribution: size structure of phytoplankton communities , 2008 .

[42]  A. Calbet The trophic roles of microzooplankton in marine systems , 2008 .

[43]  D. Mouillot,et al.  Growth rate peaks at intermediate cell size in marine photosynthetic picoeukaryotes , 2008 .

[44]  F. G. Figueiras,et al.  Phytoplankton size structure and water column metabolic balance in a coastal upwelling system: the Ría de Vigo, NW Iberia , 2008 .

[45]  D. Harbour,et al.  Resource levels, allometric scaling of population abundance, and marine phytoplankton diversity , 2008 .

[46]  E. Marañón Phytoplankton Size Structure , 2008 .

[47]  Elena Litchman,et al.  The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. , 2007, Ecology letters.

[48]  Emilio Marañón,et al.  Inter-specific scaling of phytoplankton production and cell size in the field , 2007 .

[49]  P. Falkowski,et al.  Mix and match: how climate selects phytoplankton , 2007, Nature Reviews Microbiology.

[50]  R. Harris,et al.  Scaling of phytoplankton photosynthesis and cell size in the ocean , 2007 .

[51]  S. Strom,et al.  Microzooplankton grazing in the coastal Gulf of Alaska: Variations in top‐down control of phytoplankton , 2007 .

[52]  Thomas W. Trull,et al.  Understanding the export of biogenic particles in oceanic waters: Is there consensus? , 2007 .

[53]  Scott C. Doney,et al.  Oceanography: Plankton in a warmer world , 2006, Nature.

[54]  D. Harbour,et al.  Invariant scaling of phytoplankton abundance and cell size in contrasting marine environments. , 2006, Ecology letters.

[55]  Xabier Irigoien,et al.  Scaling the metabolic balance of the oceans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[56]  E. Davidson,et al.  Temperature sensitivity of soil carbon decomposition and feedbacks to climate change , 2006, Nature.

[57]  E. Marañón,et al.  Phytoplankton size structure and primary production in a highly dynamic coastal ecosystem (Ria de Vigo, NW-Spain): Seasonal and short-time scale variability , 2006 .

[58]  K. Sand‐Jensen,et al.  Seasonal changes in temperature and nutrient control of photosynthesis, respiration and growth of natural phytoplankton communities , 2006 .

[59]  K. Flynn,et al.  Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. , 2006, The New phytologist.

[60]  E. Davidson,et al.  On the variability of respiration in terrestrial ecosystems: moving beyond Q10 , 2006 .

[61]  Olivier Aumont,et al.  Response of diatoms distribution to global warming and potential implications: A global model study , 2005 .

[62]  M. Estrada,et al.  Estimating the carbon flux through main phytoplankton groups in the northwestern Mediterranean , 2005 .

[63]  E. Marañón,et al.  Large-sized phytoplankton sustain higher carbon-specific photosynthesis than smaller cells in a coastal eutrophic ecosystem , 2005 .

[64]  L. Øvreås,et al.  Use of non‐limiting substrates to increase size; a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs? , 2005 .

[65]  E. Marañón,et al.  Size dependence of coastal phytoplankton photosynthesis under vertical mixing conditions , 2005 .

[66]  Xabier Irigoien,et al.  Phytoplankton blooms: a ‘loophole’ in microzooplankton grazing impact? , 2005 .

[67]  Pamela A. Matson,et al.  Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean , 2005, Nature.

[68]  F. Guerrero,et al.  Variability in the spatio-temporal distribution and size-structure of phytoplankton across an upwelling area in the NW-Alboran Sea, (W-Mediterranean) , 2005 .

[69]  E. Marañón Phytoplankton growth rates in the Atlantic subtropical gyres , 2005 .

[70]  P. Tréguer,et al.  Growth physiology and fate of diatoms in the ocean: a review , 2005 .

[71]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[72]  A. Irwin,et al.  Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankton , 2004 .

[73]  Geoffrey B. West,et al.  The predominance of quarter-power scaling in biology , 2004 .

[74]  Michael R. Landry,et al.  Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems , 2004 .

[75]  Tom Fenchel,et al.  Intrinsic rate of natural increase: The relationship with body size , 1974, Oecologia.

[76]  D. Montagnes,et al.  Protists decrease in size linearly with temperature: ca. 2.5% °C−1 , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[77]  M. Behrenfeld,et al.  High variability of primary production in oligotrophic waters of the Atlantic Ocean : uncoupling from phytoplankton biomass and size structure , 2003 .

[78]  S. Chisholm,et al.  Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean , 2001 .

[79]  A. Calbet Mesozooplankton grazing effect on primary production: A global comparative analysis in marine ecosystems , 2001 .

[80]  David J. S. Montagnes,et al.  Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: Reconsidering some paradigms , 2001 .

[81]  James H. Brown,et al.  Effects of Size and Temperature on Metabolic Rate , 2001, Science.

[82]  P. Holligan,et al.  Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments , 2001 .

[83]  Joaquín Tintoré,et al.  Mesoscale vertical motion and the size structure of phytoplankton in the ocean , 2001, Nature.

[84]  Z. Finkel Light absorption and size scaling of light‐limited metabolism in marine diatoms , 2001 .

[85]  Andrew J. Watson,et al.  A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization , 2000, Nature.

[86]  R. Bidigare,et al.  Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). III. Dynamics of phytoplankton growth and microzooplankton grazing , 2000 .

[87]  Susanne Menden-Deuer,et al.  Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton , 2000 .

[88]  Patrick M. Holligan,et al.  Basin-scale variability of phytoplankton biomass, production and growth in the Atlantic Ocean , 2000 .

[89]  Amos Maritan,et al.  Size and form in efficient transportation networks , 1999, Nature.

[90]  V. Smetácek,et al.  Diatoms and the ocean carbon cycle. , 1999, Protist.

[91]  F. Echevarría,et al.  Patterns in the size structure of the phytoplankton community in the deep fluorescence maximum of the Alboran Sea (southwestern mediterranean) , 1998 .

[92]  James H. Brown,et al.  Allometric scaling of plant energetics and population density , 1998, Nature.

[93]  John A. Raven,et al.  The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton , 1998 .

[94]  G. Tarran,et al.  Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S , 1998 .

[95]  P. Falkowski,et al.  Biogeochemical Controls and Feedbacks on Ocean Primary Production , 1998, Science.

[96]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[97]  R. Bidigare,et al.  Pigment specific growth and grazing rates of phytoplankton in the central equatorial Pacific , 1997 .

[98]  F. Rassoulzadegan,et al.  Food-web mediated export of biogenic carbon in oceans: hydrodynamic control , 1996 .

[99]  J. K. Moore,et al.  Vertical migration of Rhizosolenia mats and their significance to NO3− fluxes in the central North Pacific gyre , 1996 .

[100]  E. Tang,et al.  The allometry of algal growth rates , 1995 .

[101]  R. Riegman,et al.  Effect of phytoplankton cell size on transient-state nitrate and ammonium uptake kinetics. , 1995, Microbiology.

[102]  R. Peters,et al.  The allometry of algal respiration , 1995 .

[103]  L. Legendre,et al.  MICROBIAL FOOD WEBS AND THE EXPORT OF BIOGENIC CARBON IN OCEANS , 1995 .

[104]  R. Armstrong,et al.  Grazing limitation and nutrient limitation in marine ecosystems: Steady state solutions of an ecosystem model with multiple food chains , 1994 .

[105]  K. Niklas Size‐dependent variations in plant growth rates and the “¾‐power rule” , 1994 .

[106]  J. Raven Why are there no picoplanktonic O2 evolvers with volumes less than 10−19 m3? , 1994 .

[107]  Thomas Kiørboe,et al.  Turbulence, Phytoplankton Cell Size, and the Structure of Pelagic Food Webs , 1993 .

[108]  Michael E. Sieracki,et al.  Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton , 1992 .

[109]  Hugh L. MacIntyre,et al.  Nutrient Limitation of Marine Photosynthesis , 1992 .

[110]  Dag L. Aksnes,et al.  A theoretical model for nutrient uptake in phytoplankton , 1991 .

[111]  U. Sommer Maximal growth rates of Antarctic phytoplankton: Only weak dependence on cell size , 1989 .

[112]  P. Harrison,et al.  Determination of nutrient uptake kinetic parameters: a comparison of methods , 1989 .

[113]  J. Raven THE ROLE OF VACUOLES , 1987 .

[114]  Richard J. Geider,et al.  LIGHT AND TEMPERATURE DEPENDENCE OF THE CARBON TO CHLOROPHYLL a RATIO IN MICROALGAE AND CYANOBACTERIA: IMPLICATIONS FOR PHYSIOLOGY AND GROWTH OF PHYTOPLANKTON , 1987 .

[115]  J. Raven,et al.  Size dependence of growth and photosynthesis in diatoms: a synthesis , 1986 .

[116]  D. Karentz,et al.  Temperature and seasonal occurrence patterns of 30 dominant phytoplankton species in Narragansett Bay over a 22-year period (1959-1980) , 1984 .

[117]  J. G. Field,et al.  The Ecological Role of Water-Column Microbes in the Sea* , 1983 .

[118]  K. Banse Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial1,2 , 1982 .

[119]  J. Kalff,et al.  SIZE‐DEPENDENT PHOSPHORUS UPTAKE KINETICS AND CELL QUOTA IN PHYTOPLANKTON 1 , 1982 .

[120]  D. Blasco,et al.  SIZE DEPENDENCE OF GROWTH RATE, RESPIRATORY ELECTRON TRANSPORT SYSTEM ACTIVITY, AND CHEMICAL COMPOSITION IN MARINE DIATOMS IN THE LABORATORY 1 , 1982 .

[121]  R. Margalef Life-forms of phytoplankton as survival alternatives in an unstable environment , 1978 .

[122]  E. Laws The Importance of Respiration Losses in Controlling the Size Distribution of Marine Phytoplankton , 1975 .

[123]  J. Gavis,et al.  Transport limitation of nutrient uptake in phytoplankton1 , 1974 .

[124]  M. Droop SOME THOUGHTS ON NUTRIENT LIMITATION IN ALGAE 1 , 1973 .

[125]  T. Smayda The suspension and sinking of phytoplankton in the sea , 1970 .

[126]  M. Kleiber Body size and metabolism , 1932 .