Traffic Accident Benchmark for Causality Recognition

[1]  Runhao Zeng,et al.  Graph Convolutional Networks for Temporal Action Localization , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[2]  Hoon Kim,et al.  Crash to Not Crash: Learn to Identify Dangerous Vehicles Using a Simulator , 2019, AAAI.

[3]  Yazan Abu Farha,et al.  MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Yu Yao,et al.  Unsupervised Traffic Accident Detection in First-Person Videos , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[5]  Trevor Darrell,et al.  Spatio-Temporal Action Graph Networks , 2018, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[6]  Lars Petersson,et al.  VIENA2: A Driving Anticipation Dataset , 2018, ACCV.

[7]  Andrew Zisserman,et al.  Learning and Using the Arrow of Time , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[8]  Rahul Sukthankar,et al.  Rethinking the Faster R-CNN Architecture for Temporal Action Localization , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[9]  Yutaka Satoh,et al.  Anticipating Traffic Accidents with Adaptive Loss and Large-Scale Incident DB , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[10]  Yutaka Satoh,et al.  Drive Video Analysis for the Detection of Traffic Near-Miss Incidents , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[11]  Yutaka Satoh,et al.  Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet? , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[12]  Bernard Ghanem,et al.  SST: Single-Stream Temporal Action Proposals , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Andrew Zisserman,et al.  Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Juan Carlos Niebles,et al.  Agent-Centric Risk Assessment: Accident Anticipation and Risky Region Localization , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Limin Wang,et al.  Temporal Action Detection with Structured Segment Networks , 2017, International Journal of Computer Vision.

[16]  Kate Saenko,et al.  R-C3D: Region Convolutional 3D Network for Temporal Activity Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[17]  Min Sun,et al.  Anticipating Accidents in Dashcam Videos , 2016, ACCV.

[18]  Gregory D. Hager,et al.  Temporal Convolutional Networks for Action Segmentation and Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Luc Van Gool,et al.  Temporal Segment Networks: Towards Good Practices for Deep Action Recognition , 2016, ECCV.

[20]  Bernhard Schölkopf,et al.  Discovering Causal Signals in Images , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Andrew Zisserman,et al.  Convolutional Two-Stream Network Fusion for Video Action Recognition , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Richard Bowden,et al.  Exploring Causal Relationships in Visual Object Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[23]  Bernard Ghanem,et al.  ActivityNet: A large-scale video benchmark for human activity understanding , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[25]  Andrew Zisserman,et al.  Two-Stream Convolutional Networks for Action Recognition in Videos , 2014, NIPS.

[26]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[27]  Bernhard Schölkopf,et al.  Seeing the Arrow of Time , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Wassim G. Najm,et al.  Pre-Crash Scenario Typology for Crash Avoidance Research , 2007 .