t-Designs in Projective Spaces

Delsarte, Goethals and Seidel originated the idea of t-designs of points on a sphere in R" by analogy with combinatorial r-designs [18]. These spherical t-designs have interesting combinatorial properties and relate to several mathematical disciplines [20]. The idea was extended by Neumaier [31] to his concept of r-designs in Delsarte spaces, the latter being so named by an analogy with the Q-polynomial association schemes of Delsarte (see [16, 30, 31]). In Section 2 we derive in a unified way the related special functions for Delsarte spaces IFP"-l (Section 1), which are projective spaces over IF =R, C, the quaternions IHI, or the Cayley numbers (or octonions) O. In terms of the dimension of IF over R, and for "distance sets" of arbitrary cardinality, we determine absolute bounds (Section 3) then special bounds and indicator coefficients [31] for r-designs (Sections 4 and 5). We give examples, some new some old, mainly for IF = C, IHI, 0 (the case IF = R is thoroughly studied in [17, 18, 20]). We include the generalized hexagon [7] on 819 points, with parameters (2, 8), as a 5-design in the Cayley Plane OP (Example 10 and 5.3,5.4) meeting the absolute bound. Several examples related to Leech's Lattice appear (Examples 11,27,28, Remark 5.4).

[1]  H. A. van deMeer Octonions and related exceptional homogeneous spaces , 1977 .

[2]  J. H. Lindsey,et al.  A correlation between ₄(3), the Suzuki group, and the Conway group , 1971 .

[3]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[4]  J. Conway,et al.  Construction of the Rudvalis group of order 145,926,144,000☆ , 1973 .

[5]  G. C. Shephard,et al.  Finite Unitary Reflection Groups , 1954, Canadian Journal of Mathematics.

[6]  Arjeh M. Cohen,et al.  Finite Quaternionic Reflection Groups , 1980 .

[7]  H. S. M. Coxeter,et al.  Integral Cayley numbers , 1946 .

[8]  S. G. Hoggar Bounds for quaternionic line systems and reflection groups. , 1978 .

[9]  Arnold Neumaier,et al.  Distances, Graphs and Designs , 1980, Eur. J. Comb..

[10]  Jacques Tits,et al.  Quaternions over Q(√5), Leech's lattice and the sporadic group of Hall-Janko , 1980 .

[11]  G. C. Shephard Unitary Groups Generated by Reflections , 1953, Canadian Journal of Mathematics.

[12]  E. F. Assmus Finite geometries and designs , 1976, Nature.

[13]  Donald W. Crowe A Regular Quaternion Polygon , 1959, Canadian Mathematical Bulletin.

[14]  R. Gangolli,et al.  Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's brownian motion of several parameters , 1967 .

[15]  J. L. Brenner,et al.  Matrices of quaternions. , 1951 .

[16]  A. Neumaier Combinatorial configurations in terms of distances , 1981 .

[17]  Tom H. Koornwinder,et al.  The addition formula for Jacobi polynomials and spherical harmonics : prepublication , 1973 .

[18]  J. Seidel,et al.  BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .

[19]  Hsien-Chtjng Wang,et al.  TWO-POINT HOMOGENEOUS SPACES , 1952 .

[20]  N. J. A. Sloane,et al.  New Bounds on the Number of Unit Spheres That Can Touch a Unit Sphere in n Dimensions , 1979, J. Comb. Theory, Ser. A.

[21]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[22]  N. Sloane,et al.  Sphere Packings and Error-Correcting Codes , 1971, Canadian Journal of Mathematics.

[23]  John H. Conway,et al.  A Group of Order 8,315,553,613,086,720,000 , 1969 .

[24]  H. S. M. Coxeter Finite groups generated by unitary reflections , 1967 .

[25]  C Chevalley,et al.  The Exceptional Simple Lie Algebras F(4) and E(6). , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[26]  S. G. Hoggar Two Quaternionic 4-Polytopes , 1981 .

[27]  van der,et al.  Octonions and related exceptional homogeneous spaces , 1977 .

[28]  A. Cohen,et al.  Finite complex reflection groups , 1976 .

[29]  H. S. M. Coxeter The equianharmonic surface and the Hessian polyhedron , 1974 .

[30]  E. Shult,et al.  Near n-gons and line systems , 1980 .

[31]  Arjeh M. Cohen Exceptional Presentations of Three Generalized Hexagons of Order 2 , 1983, J. Comb. Theory, Ser. A.

[32]  Arjeh M. Cohen A near octagon associated with HJ , 1980 .

[33]  J. A. Todd,et al.  An Extreme Duodenary Form , 1953, Canadian Journal of Mathematics.

[34]  D. Montgomery,et al.  Transformation Groups of Spheres , 1943 .