Third-order methods on Riemannian manifolds under Kantorovich conditions

One of the most studied problems in numerical analysis is the approximation of nonlinear equations using iterative methods. In the past years, attention has been paid in studying Newton's method on manifolds. In this paper, we generalize this study by considering a general class of third-order iterative methods. A characterization of the convergence under Kantorovich type conditions and optimal error estimates is found.

[1]  Orizon Pereira Ferreira,et al.  Kantorovich's Theorem on Newton's Method in Riemannian Manifolds , 2002, J. Complex..

[2]  P. Priouret,et al.  Newton's method on Riemannian manifolds: covariant alpha theory , 2002, math/0209096.

[3]  Ioannis K. Argyros,et al.  Extending the applicability of Newton's method on Lie groups , 2013, Appl. Math. Comput..

[4]  Lei-Hong Zhang,et al.  Riemannian Newton Method for the Multivariate Eigenvalue Problem , 2010, SIAM J. Matrix Anal. Appl..

[5]  Sergio Amat,et al.  High order iterative schemes for quadratic equations , 2008, Numerical Algorithms.

[6]  Ioannis K. Argyros An improved unifying convergence analysis of Newton’s method in Riemannian manifolds , 2007 .

[7]  I. Argyros Improved Error Bounds for a Chebysheff-Halley-Type Method , 1999 .

[8]  Chong Li,et al.  Newton's method on Riemannian manifolds: Smale's point estimate theory under the γ-condition , 2006 .

[9]  Sergio Amat,et al.  Third-order iterative methods with applications to Hammerstein equations: A unified approach , 2011, J. Comput. Appl. Math..

[10]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[11]  R. Adler,et al.  Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .

[12]  R. Kress Numerical Analysis , 1998 .

[13]  Natalia Romero Álvarez Familias paramétricas de procesos iterativos de alto orden de convergencia , 2006 .

[14]  Felipe Alvarez,et al.  A Unifying Local Convergence Result for Newton's Method in Riemannian Manifolds , 2008, Found. Comput. Math..

[15]  S. Amat,et al.  Third-order iterative methods under Kantorovich conditions , 2007 .

[16]  J. H. Wang,et al.  Convergence of Newton’s Method for Sections on Riemannian Manifolds , 2011, J. Optim. Theory Appl..

[17]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[18]  Chebysheff-Halley-like methods in Banach spaces , 1997 .

[19]  O. P. Ferreira,et al.  Local convergence of Newton's method under a majorant condition in Riemannian manifolds , 2012 .

[20]  Jean-Pierre Dedieu,et al.  Symplectic methods for the approximation of the exponential map and the Newton iteration on Riemannian submanifolds , 2005, J. Complex..

[21]  J. A. Ezquerro,et al.  A Super-Halley Type Approximation in Banach Spaces , 2001 .

[22]  David Groisser Newton's method, zeroes of vector fields, and the Riemannian center of mass , 2004, Adv. Appl. Math..

[23]  N. Romero,et al.  General Study of Iterative Processes of R-Order at Least Three under Weak Convergence Conditions , 2007 .

[24]  N. Romero,et al.  On a characterization of some Newton-like methods of R-order at least three , 2005 .

[25]  I. Argyros,et al.  Newton’s method for approximating zeros of vector fields on Riemannian manifolds , 2009 .

[26]  Miguel Ángel Hernández,et al.  An extension of Gander's result for quadratic equations , 2010, J. Comput. Appl. Math..

[27]  I. Argyros Improving the order and rates of convergence for the Super-Halley method in Banach spaces , 1998 .

[28]  Suying Zhang,et al.  Improved Newton iteration for nonlinear matrix equations on quadratic Lie groups , 2006, Appl. Math. Comput..

[29]  J. A. Ezquerro,et al.  New Kantorovich‐Type Conditions for Halley's Method , 2005 .

[30]  Chong Li,et al.  CONVERGENCE OF THE FAMILY OF EULER-HALLEY TYPE METHODS ON RIEMANNIAN MANIFOLDS UNDER THE γ-CONDITION , 2009 .

[31]  I. Argyros Convergence and Applications of Newton-type Iterations , 2008 .

[32]  Ioannis K. Argyros,et al.  Quadratic equations and applications to Chandrasekhar's and related equations , 1985, Bulletin of the Australian Mathematical Society.

[33]  L. Kantorovich,et al.  Functional analysis in normed spaces , 1952 .

[34]  I. Holopainen Riemannian Geometry , 1927, Nature.

[35]  J. M. Gutiérrez,et al.  An adaptive version of a fourth-order iterative method for quadratic equations , 2006 .

[36]  Ioannis K. Argyros,et al.  On an improved convergence analysis of Newton's method , 2013, Appl. Math. Comput..

[37]  José Antonio Ezquerro,et al.  Chebyshev-like methods and quadratic equations , 1999 .