Hybrid Reasoning Using Universal Attachment

Abstract Hybrid representation frameworks provide a powerful basis for constructing intelligent systems. Universal attachment is a domain-independent mechanism for integrating diverse representation and reasoning methods into hybrid frameworks that contain a subsystem based on deduction over logical formulas. Although based on the same principles as previous attachment methods, universal attachment provides a much broader range of connections between general-purpose deduction and specialized representation and reasoning techniques. This paper defines a formal inference rule of universal attachment and discusses the properties of soundness, completeness and correctness for this rule. The relationship between universal attachment and other integration techniques is explored. Finally, policies based on experimentation with an implemented universal attachment system are presented that lend guidance in exploiting the expanded representational and inferential capabilities that hybrid systems provide.

[1]  Gary G. Hendrix,et al.  An Approach to Acquiring and Applying Knowledge , 1980, AAAI.

[2]  Joxan Jaffar,et al.  Constraint logic programming , 1987, POPL '87.

[3]  Robert S. Boyer,et al.  Metafunctions: Proving Them Correct and Using Them Efficiently as New Proof Procedures. , 1979 .

[4]  Karen L. Myers Universal Attachment: An Integration Method for Logic Hybrids , 1991, KR.

[5]  Luigia Carlucci Aiello Automatic Generation of Semantic Attachments in FOL , 1980, AAAI.

[6]  Jörg H. Siekmann Unification Theory , 1989, J. Symb. Comput..

[7]  Karen L. Myers Automatically Generating Universal Attachments Through Compilation , 1990, AAAI.

[8]  H. Gelernter,et al.  Realization of a geometry theorem proving machine , 1995, IFIP Congress.

[9]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[10]  Richard B. Scherl,et al.  A Bibliography on Hybrid Reasoning , 1991, AI Mag..

[11]  Raymond Reiter,et al.  Equality and Domain Closure in First-Order Databases , 1980, JACM.

[12]  Zohar Manna,et al.  TABLOG: A New Approach To Logic Programming , 1986, Logic Programming: Functions, Relations, and Equations.

[13]  Robert A. Kowalski,et al.  Algorithm = logic + control , 1979, CACM.

[14]  Hassan Aït-Kaci,et al.  LOGIN: A Logic Programming Language with Built-In Inheritance , 1986, J. Log. Program..

[15]  L. Wos,et al.  Paramodulation and Theorem-Proving in First-Order Theories with Equality , 1983 .

[16]  Lenhart K. Schubert,et al.  Accelerating Deductive Inference: Special Methods for Taxonomies, Colours and Times , 1987 .

[17]  Robert E. Filman,et al.  An FOL primer , 1976 .

[18]  Lenhart K. Schubert,et al.  Time revisited 1 , 1990, Comput. Intell..

[19]  J. Schwartz,et al.  Metamathematical extensibility for theorem verifiers and proof-checkers☆ , 1979 .

[20]  Stuart J. Russell,et al.  The compleat guide to MRS , 1985 .

[21]  Anthony G. Cohn On the Appearance of Sortal Literals: a Non Substitutional Framework for Hybrid Reasoning , 1989, KR.

[22]  Jon Barwise,et al.  Hyperproof: Logical Reasoning with Diagrams , 1992 .

[23]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[24]  Richard W. Weyhrauch,et al.  Prolegomena to a Theory of Mechanized Formal Reasoning , 1980, Artif. Intell..

[25]  Charles Rich,et al.  The Layered Architecture of a System for Reasoning about Programs , 1985, IJCAI.

[26]  Mark E. Stickel,et al.  The KLAUS Automated Deduction System , 1986, CADE.

[27]  Alain Colmerauer,et al.  An introduction to Prolog III , 1989, CACM.

[28]  Robert A. Nado,et al.  JOSIE: an integration of specialized representation and reasoning tools , 1991, SGAR.

[29]  Carolyn L. Talcott,et al.  Towards a Theory of Mechanizable Theories: I, FOL Contexts: The Extensional View , 1990, ECAI.

[30]  Jacques Cohen,et al.  Constraint logic programming languages , 1990, CACM.

[31]  Terry Winograd,et al.  FRAME REPRESENTATIONS AND THE DECLARATIVE/PROCEDURAL CONTROVERSY , 1975 .

[32]  Charles Rich Knowledge Representation Languages and Predicate Calculus: How to Have Your Cake and Eat It Too , 1982, AAAI.

[33]  Lenhart K. Schubert,et al.  Using Specialists to Accelerate General Reasoning , 1988, AAAI.

[34]  Alan M. Frisch The Substitutional Framework for Sorted Deduction: Fundamental Results on Hybrid Reasoning , 1991, Artif. Intell..

[35]  Mark E. Stickel,et al.  A Nonclausal Connection-Graph Resolution Theorem-Proving Program , 1982, AAAI.

[36]  J. Barwise,et al.  Visual information and valid reasoning , 1991 .

[37]  C. Cordell Green,et al.  The Application of Theorem Proving to Question-Answering Systems , 1969, Outstanding Dissertations in the Computer Sciences.

[38]  Hector J. Levesque,et al.  Krypton: A Functional Approach to Knowledge Representation , 1983, Computer.

[39]  Hector J. Levesque,et al.  An Essential Hybrid Reasoning System: Knowledge and Symbol Level Accounts of KRYPTON , 1985, IJCAI.

[40]  Marc B. Vilain,et al.  The Restricted Language Architecture of a Hybrid Representation System , 1985, IJCAI.

[41]  Edward P. Stabler Syntactic Equality in Knowledge Representation and Reasoning , 1989, KR.

[42]  Hector J. Levesque,et al.  Making Believers out of Computers , 1986, Artif. Intell..