Self-assembled arrays of ZnO nanoparticles and their application as varistor materialsElectronic supplementary information (ESI) available: XRD plots and FESEM images. See http://www.rsc.org/suppdata/jm/b4/b400927d/

Linear arrays of ZnO nanoparticles have been successfully prepared by a simple sol–gel condensation reaction involving chemical modifiers, followed by drying (80 °C) and calcination (500 °C). The calcined material (nano-array ZnO) is composed of approximately spherical nanoparticles of average diameter 21 ± 3 nm, self-assembled to form arrays extending in length to 2–4 µm. The morphology of the ZnO is found to depend sensitively on the amounts of chemical modifiers present. In their absence the ZnO produced (nano-ZnO) is an unstructured agglomerate of nanoparticles. The mechanism for formation of these linear arrays has been investigated by examining the intermediates formed at 80 °C and 250 °C using XRD and TEM and by following the decomposition reactions using TGA and DSC. Varistors prepared from the nano-array ZnO by sintering (1050 °C) with appropriate mixtures of metal oxides showed a breakdown voltage of 786 ± 30 V mm−1, which is substantially higher than that of samples prepared under similar conditions from either micron-sized commercial ZnO (507 ± 30 V mm−1) or from nano-ZnO (683 ± 30 V mm−1).

[1]  G. Meng,et al.  Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties , 2000 .

[2]  Yongxiang Li,et al.  Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes , 2000 .

[3]  A. Eychmüller,et al.  Annealing of Nanometer-Sized Zinc Oxide Particles , 2002 .

[4]  Chunhua Yan,et al.  ZnO nanowires fabricated by a convenient route , 2002 .

[5]  Dapeng Yu,et al.  Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach , 2001 .

[6]  T. Gupta Application of Zinc Oxide Varistors , 1990 .

[7]  J. Tartaj,et al.  Sintering Behavior and Electrical Properties of Nanosized Doped‐ZnO Powders Produced by Metallorganic Polymeric Processing , 2004 .

[8]  Wolfgang Pompe,et al.  Nanoscale palladium metallization of DNA , 2000 .

[9]  J. Kelly,et al.  Growth of well-defined ZnO microparticles by hydroxide ion , 2003 .

[10]  J. Coey,et al.  Enhanced magnetoresistance in nanocrystalline magnetite , 2003 .

[11]  Chunzhong Li,et al.  Acetate-derived ZnO ultrafine particles synthesized by spray pyrolysis , 1998 .

[12]  Eric A. Meulenkamp,et al.  Synthesis and Growth of ZnO Nanoparticles , 1998 .

[13]  Hong‐Ming Lin,et al.  Electrode effects on gas sensing properties of nanocrystalline zinc oxide , 1998 .

[14]  Nick S. Norberg,et al.  Colloidal transition-metal-doped ZnO quantum dots. , 2002, Journal of the American Chemical Society.

[15]  Ling-Dong Sun,et al.  Control of ZnO Morphology via a Simple Solution Route , 2002 .

[16]  A. Hagfeldt,et al.  Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO , 2001 .

[17]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[18]  D. Fitzmaurice,et al.  Carbon Nanotube Templated Self‐Assembly and Thermal Processing of Gold Nanowires , 2000 .

[19]  Cheng Wang,et al.  Preparation of Mg(OH)2 Nanorods , 2000 .

[20]  Takafumi Yao,et al.  ZnO as a novel photonic material for the UV region , 2000 .

[21]  M. Inada Formation Mechanism of Nonohmic Zinc Oxide Ceramics , 1980 .

[22]  Suresh C. Pillai,et al.  The Effect of Processing Conditions on Varistors Prepared From Nanocrystalline ZnO , 2003 .

[23]  Anthony R. West,et al.  Solid State Chemistry and its Applications , 1984 .

[24]  D. L. Overmyer,et al.  Improving sol-gel Yba_2Cu_3O_7−δ film morphology using high-boiling-point solvents , 2002 .

[25]  A. Muramatsu,et al.  Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method. 4. Shape control. , 2003, Journal of colloid and interface science.

[26]  Daniel T. Schwartz,et al.  Electrodeposited Nanocomposite n–p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics , 2000 .

[27]  David P. Norton,et al.  Ferromagnetism in Mn-implanted ZnO:Sn single crystals , 2003 .

[28]  I. Fragalà,et al.  Deposition and characterization of transparent thin films of zinc oxide doped with Bi and Sb , 2002 .

[29]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[30]  M. C. Neves,et al.  Synthetic hollow zinc oxide microparticles , 2001 .

[31]  Marc A. Anderson,et al.  Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids , 1991 .

[32]  Sten-Eric Lindquist,et al.  Three-dimensional array of highly oriented crystalline ZnO microtubes , 2001 .

[33]  Suresh C. Pillai,et al.  Preparation of magnetic nanoparticles and their assemblies using a new Fe(II) alkoxide precursor , 2001 .

[34]  S. Pardeshi,et al.  A study of the thermal decomposition of copper(II) and zinc(II) malonate, maleate and succinate complexes using direct current electrical conductivity measurements , 2001 .

[35]  B. Korgel,et al.  Self‐Assembly of Silver Nanocrystals into Two‐Dimensional Nanowire Arrays , 1998 .

[36]  Y. Qian,et al.  Preparation of late transition metal selenides with different morphologies in ethylenediamine , 2000 .

[37]  J. Langford,et al.  Early Stages of Crystallite Growth of ZnO Obtained from an Oxalate Precursor , 1995 .

[38]  M. Matsuoka Nonohmic Properties of Zinc Oxide Ceramics , 1971 .

[39]  Y. Qian,et al.  A solvent-reduction approach to tetrapod-like copper(I) chloride crystallites , 2003 .

[40]  S. Fujihara,et al.  Role of Organic Additives in the Sol-Gel Synthesis of Porous CaF2 Anti-Reflective Coatings , 2002 .

[41]  Ziyu Wu,et al.  Synthesis and evolution of rod-like nano-scaled ZnC2O4·2H2O whiskers to ZnO nanoparticles , 2003 .

[42]  Toshio Kimura,et al.  Visible photoluminescence of ZnO nanoparticles dispersed in highly transparent MgF2 thin-films via sol–gel process , 2001 .

[43]  Bin Liu,et al.  Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. , 2003, Journal of the American Chemical Society.