Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data

Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the “phyllocian” era) are found in the oldest terrains; sulfates were formed in a second era (the “theiikian” era) in an acidic environment. Beginning about 3.5 billion years ago, the last era (the “siderikian”) is dominated by the formation of anhydrous ferric oxides in a slow superficial weathering, without liquid water playing a major role across the planet.

[1]  E B Wilson,et al.  On the physical basis of life , 2010 .

[2]  J. D. Bernal,et al.  The Physical Basis of Life , 1949 .

[3]  H. Newsom Hydrothermal alteration of impact melt sheets with implications for Mars , 1980 .

[4]  R. Kahn The evolution of CO2 on Mars , 1985 .

[5]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[6]  P. Pinet,et al.  Spectral identification of geological units on the surface of Mars related to the presence of silicates from Earth‐based near‐infrared telescopic charge‐coupled device imaging , 1990 .

[7]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[8]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[9]  E. Shock,et al.  Hydrothermal hydration of Martian crust: illustration via geochemical model calculations. , 1997, Journal of geophysical research.

[10]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[11]  R. Phillips,et al.  Mars' volatile and climate history , 2001, Nature.

[12]  David C. Catling,et al.  Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes , 2001 .

[13]  M. Galand,et al.  The profile of the hydrogen H β emission line in proton aurora , 2001 .

[14]  David E. Smith,et al.  Ancient Geodynamics and Global-Scale Hydrology on Mars , 2001, Science.

[15]  J. Bandfield,et al.  Spectroscopic Identification of Carbonate Minerals in the Martian Dust , 2003, Science.

[16]  D. Ming,et al.  Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover , 2004, Science.

[17]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[18]  Carolina S. Vollert,et al.  To whom correspondence should be addressed , 2004 .

[19]  François Leblanc,et al.  Mars atmospheric escape and evolution; interaction with the solar wind , 2004 .

[20]  P. Drossart,et al.  Perennial water ice identified in the south polar cap of Mars , 2004, Nature.

[21]  T. Encrenaz,et al.  Hydrogen peroxide on Mars: evidence for spatial and seasonal variations , 2004 .

[22]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater , 2004, Science.

[23]  J F Bell,et al.  Magnetic Properties Experiments on the Mars Exploration Rover Spirit at Gusev Crater , 2004, Science.

[24]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[25]  R E Arvidson,et al.  Spectral Reflectance and Morphologic Correlations in Eastern Terra Meridiani, Mars , 2005, Science.

[26]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[27]  Steven A Hauck,et al.  New Perspectives on Ancient Mars , 2005, Science.

[28]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[29]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[30]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.