Quintuple-ζ quality coupled-cluster correlation energies with triple-ζ basis sets

The explicitly-correlated coupled-cluster method CCSD(T)(R12) is extended to include F12 geminal basis functions that decay exponentially with the interelectronic distance and reproduce the form of the average Coulomb hole more accurately than linear-r12. Equations derived using the Ansatz 2 strong orthogonality projector are presented. The convergence of the correlation energy with orbital basis set for the new CCSD(T)(F12) method is studied and found to be rapid, 98% of the basis set limit correlation energy is typically recovered using triple-ζ orbital basis sets. The performance for reaction enthalpies is assessed via a test set of 15 reactions involving 23 molecules. The title statement is found to hold equally true for total and relative correlation energies.

[1]  R. Hill,et al.  Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method , 1985 .

[2]  Mihaly Kallay,et al.  W3 theory: robust computational thermochemistry in the kJ/mol accuracy range. , 2003, Journal of Chemical Physics.

[3]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[4]  Frederick R. Manby,et al.  R12 methods in explicitly correlated molecular electronic structure theory , 2006 .

[5]  T. Helgaker,et al.  Computation of two-electron Gaussian integrals for wave functions including the correlation factor r12exp(−γr122) , 2002 .

[6]  H. Lüthi,et al.  An ab initio derived torsional potential energy surface for (H2O)3. II. Benchmark studies and interaction energies , 1995 .

[7]  Frederick R. Manby,et al.  Density fitting in second-order linear-r12 Møller–Plesset perturbation theory , 2003 .

[8]  W. A. Jong,et al.  Performance of coupled cluster theory in thermochemical calculations of small halogenated compounds , 2003 .

[9]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[10]  T. Helgaker,et al.  Second-order Møller–Plesset perturbation theory with terms linear in the interelectronic coordinates and exact evaluation of three-electron integrals , 2002 .

[11]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[12]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited , 2001 .

[13]  John A. Montgomery,et al.  A complete basis set model chemistry. VII. Use of the minimum population localization method , 2000 .

[14]  Wim Klopper,et al.  CC-R12, a correlation cusp corrected coupled-cluster method with a pilot application to the Be2 potential curve , 1992 .

[15]  Seiichiro Ten-no,et al.  Initiation of explicitly correlated Slater-type geminal theory , 2004 .

[16]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[17]  Edward F. Valeev Computation of precise two-electron correlation energies with imprecise Hartree–Fock orbitals , 2006 .

[18]  B. Miguel,et al.  A comparison of the geometrical sequence formula and the well-tempered formulas for generating GTO basis orbital exponents , 1990 .

[19]  Edward F. Valeev,et al.  Analysis of the errors in explicitly correlated electronic structure theory. , 2005, Physical chemistry chemical physics : PCCP.

[20]  J. Rychlewski,et al.  Benchmark calculations for two-electron systems using explicitly correlated Gaussian functions , 1995 .

[21]  N. Handy,et al.  The determination of energies and wavefunctions with full electronic correlation , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  B. Ruscic,et al.  W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. , 2006, The Journal of chemical physics.

[23]  D. Tew,et al.  New correlation factors for explicitly correlated electronic wave functions. , 2005, The Journal of chemical physics.

[24]  W. Klopper,et al.  Coupled-cluster response theory with linear-r12 corrections: the CC2-R12 model for excitation energies. , 2006, The Journal of chemical physics.

[25]  Jeppe Olsen,et al.  The initial implementation and applications of a general active space coupled cluster method , 2000 .

[26]  P. Taylor,et al.  Application of Gaussian-type geminals in local second-order Møller-Plesset perturbation theory. , 2006, The Journal of chemical physics.

[27]  Peter Pulay,et al.  Second-order Møller–Plesset calculations with dual basis sets , 2003 .

[28]  D. Truhlar,et al.  MULTI-COEFFICIENT CORRELATION METHOD FOR QUANTUM CHEMISTRY , 1999 .

[29]  Wim Klopper,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .

[30]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[31]  J. Almlöf,et al.  Dual basis sets in calculations of electron correlation , 1991 .

[32]  C. Schwartz,et al.  Importance of Angular Correlations between Atomic Electrons , 1962 .

[33]  F. Manby,et al.  Explicitly correlated second-order perturbation theory using density fitting and local approximations. , 2006, The Journal of chemical physics.

[34]  W. Klopper,et al.  Coupled-cluster theory with simplified linear-r(12) corrections: the CCSD(R12) model. , 2005, The Journal of chemical physics.

[35]  Mihály Kállay,et al.  Approximate treatment of higher excitations in coupled-cluster theory. , 2005, The Journal of chemical physics.

[36]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[37]  W. Kutzelnigg,et al.  Møller-plesset calculations taking care of the correlation CUSP , 1987 .

[38]  Mariusz Klobukowski,et al.  Well-tempered Gaussian basis sets for the calculation of matrix Hartree-Fock wavefunctions , 1993 .

[39]  Donald G. Truhlar,et al.  Robust and Affordable Multicoefficient Methods for Thermochemistry and Thermochemical Kinetics: The MCCM/3 Suite and SAC/3 , 2003 .

[40]  W. D. Allen,et al.  Toward subchemical accuracy in computational thermochemistry: focal point analysis of the heat of formation of NCO and [H,N,C,O] isomers. , 2004, The Journal of chemical physics.

[41]  R. T. Pack,et al.  Cusp Conditions for Molecular Wavefunctions , 1966 .

[42]  D. Tew,et al.  A comparison of linear and nonlinear correlation factors for basis set limit Møller-Plesset second order binding energies and structures of He2, Be2, and Ne2. , 2006, The Journal of chemical physics.

[43]  Juana Vázquez,et al.  HEAT: High accuracy extrapolated ab initio thermochemistry. , 2004, The Journal of chemical physics.

[44]  Trygve Helgaker,et al.  Accuracy of atomization energies and reaction enthalpies in standard and extrapolated electronic wave function/basis set calculations , 2000 .

[45]  W. Kutzelnigg,et al.  MP2-R12 calculations on the relative stability of carbocations , 1990 .

[46]  J. Noga,et al.  Coupled cluster theory that takes care of the correlation cusp by inclusion of linear terms in the interelectronic coordinates , 1994 .

[47]  Mihály Kállay,et al.  Basis-set extrapolation techniques for the accurate calculation of molecular equilibrium geometries using coupled-cluster theory. , 2006, The Journal of chemical physics.

[48]  S. Ten-no,et al.  Density fitting for the decomposition of three-electron integrals in explicitly correlated electronic structure theory , 2003 .

[49]  Wim Klopper,et al.  Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets , 2002 .

[50]  Frederick R Manby,et al.  Explicitly correlated local second-order perturbation theory with a frozen geminal correlation factor. , 2006, The Journal of chemical physics.

[51]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[52]  Edward F. Valeev Improving on the resolution of the identity in linear R12 ab initio theories , 2004 .

[53]  Donald G. Truhlar,et al.  Optimized Parameters for Scaling Correlation Energy , 1999 .

[54]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[55]  L. Adamowicz,et al.  Gaussian geminal basis set optimization with crude SCF reference state , 1977 .

[56]  W. Klopper,et al.  Inclusion of the (T) triples correction into the linear‐r12 corrected coupled‐cluster model CCSD(R12) , 2006 .

[57]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[58]  So Hirata,et al.  Combined coupled-cluster and many-body perturbation theories. , 2004, The Journal of chemical physics.