The HCP 7T Retinotopy Dataset: Description and pRF Analysis

About a quarter of human cerebral cortex is tiled with maps of the visual field. These maps can be measured with functional magnetic resonance imaging (fMRI) while subjects view spatially modulated visual stimuli, also known as ‘retinotopic mapping'. One of the datasets collected by the Human Connectome Project (HCP) involved ultra-high-field (7 Tesla) fMRI retinotopic mapping in 181 healthy adults (1.6-mm resolution), yielding the largest freely available collection of retinotopy data. Here, we describe the experimental paradigm and the results of model-based analysis of the fMRI data. These results provide estimates of population receptive field position and size. Our analyses include both results from individual subjects as well as results obtained by averaging fMRI time-series across subjects at each cortical and subcortical location and then fitting models. Both the group-average and individual-subject results reveal robust signals across much of the brain, including occipital, temporal, parietal, and frontal cortex as well as subcortical areas. The group-average results agree well with previously published parcellations of visual areas. In addition, split-half analyses demonstrate strong within-subject reliability, further evidencing the high quality of the data. We make publicly available the analysis results for individual subjects and the group average, as well as associated stimuli and analysis code. These resources provide an opportunity for studying fine-scale individual variability in cortical and subcortical organization and the properties of high-resolution fMRI. In addition, they provide a measure that can be combined with other HCP measures acquired in these same participants. This enables comparisons across groups, health, and age, and comparison of organization derived from a retinotopic task against that derived from other measurements such as diffusion imaging and resting-state functional connectivity.

[1]  Kevin DeSimone,et al.  Population Receptive Field Estimation Reveals New Retinotopic Maps in Human Subcortex , 2015, The Journal of Neuroscience.

[2]  Jonathan Winawer,et al.  GLMdenoise: a fast, automated technique for denoising task-based fMRI data , 2013, Front. Neurosci..

[3]  B. Wandell,et al.  Specializations for Chromatic and Temporal Signals in Human Visual Cortex , 2005, Journal of Neuroscience.

[4]  R. S. J. Frackowiak,et al.  The Activity in Human Areas V1/V2, V3, and V5 during the Perception of Coherent and Incoherent Motion , 1996, NeuroImage.

[5]  Maria Concetta Morrone,et al.  "Non-retinotopic processing" in Ternus motion displays modeled by spatiotemporal filters. , 2012, Journal of vision.

[6]  Brian A Wandell,et al.  Visual field map clusters in human cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  Stephen M. Smith,et al.  Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data , 2017, NeuroImage.

[8]  Serge O Dumoulin,et al.  Measurement of population receptive fields in human early visual cortex using back-projection tomography. , 2014, Journal of vision.

[9]  Wayne E. Mackey,et al.  Visual field map clusters in human frontoparietal cortex , 2016, bioRxiv.

[10]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[11]  K. Grill-Spector,et al.  The functional architecture of the ventral temporal cortex and its role in categorization , 2014, Nature Reviews Neuroscience.

[12]  J. Winawer,et al.  Human V4 and ventral occipital retinotopic maps , 2015, Visual Neuroscience.

[13]  Steen Moeller,et al.  The Human Connectome Project's neuroimaging approach , 2016, Nature Neuroscience.

[14]  Daniel Rueckert,et al.  Multimodal surface matching with higher-order smoothness constraints , 2017, NeuroImage.

[15]  Abraham Z. Snyder,et al.  Function in the human connectome: Task-fMRI and individual differences in behavior , 2013, NeuroImage.

[16]  Alex R. Wade,et al.  Visual areas and spatial summation in human visual cortex , 2001, Vision Research.

[17]  Steen Moeller,et al.  Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project , 2017, NeuroImage.

[18]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[19]  Mircea Ariel Schoenfeld,et al.  Spatial elongation of population receptive field profiles revealed by model‐free fMRI back‐projection , 2018, Human brain mapping.

[20]  S. Zeki,et al.  The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. , 1997, Brain : a journal of neurology.

[21]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[22]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[23]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[24]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[25]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[26]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[27]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[28]  B. Wandell,et al.  Compressive spatial summation in human visual cortex. , 2013, Journal of neurophysiology.

[29]  Ione Fine,et al.  Resting-State Retinotopic Organization in the Absence of Retinal Input and Visual Experience , 2015, The Journal of Neuroscience.

[30]  Sabine Kastner,et al.  Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks. , 2007, Journal of neurophysiology.

[31]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[32]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Malach,et al.  The topography of high-order human object areas , 2002, Trends in Cognitive Sciences.

[34]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[35]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[36]  A. T. Smith,et al.  Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. , 2001, Cerebral cortex.

[37]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[38]  A. Dale,et al.  New images from human visual cortex , 1996, Trends in Neurosciences.

[39]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[40]  Nick F. Ramsey,et al.  Patterns of resting state connectivity in human primary visual cortical areas: A 7T fMRI study , 2014, NeuroImage.

[41]  Ludovica Griffanti,et al.  Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers , 2014, NeuroImage.

[42]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[43]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[44]  Matthew F. Glasser,et al.  The Brain Analysis Library of Spatial maps and Atlases (BALSA) database , 2017, NeuroImage.

[45]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[46]  Jonathan Winawer,et al.  Individual differences in human retinotopic maps revealed by Bayesian analysis of retinotopic organization , 2018 .

[47]  Omar H. Butt,et al.  The Retinotopic Organization of Striate Cortex Is Well Predicted by Surface Topology , 2012, Current Biology.

[48]  R. Tootell,et al.  Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. , 2001, Cerebral cortex.

[49]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[50]  Leslie G. Ungerleider,et al.  Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. , 2001, Journal of neurophysiology.

[51]  R. Tootell,et al.  Projection of rods and cones within human visual cortex , 2000, Human brain mapping.

[52]  M. Pinsk,et al.  The Anatomical and Functional Organization of the Human Visual Pulvinar , 2015, The Journal of Neuroscience.

[53]  Liang Wang,et al.  Probabilistic Maps of Visual Topography in Human Cortex. , 2015, Cerebral cortex.

[54]  Jonathan Winawer,et al.  Computational neuroimaging and population receptive fields , 2015, Trends in Cognitive Sciences.

[55]  Dwight J. Kravitz,et al.  Differential Sampling of Visual Space in Ventral and Dorsal Early Visual Cortex , 2018, The Journal of Neuroscience.

[56]  B. Spehar,et al.  The Foveal Confluence in Human Visual Cortex , 2009, The Journal of Neuroscience.

[57]  Lawrence L. Wald,et al.  Accurate prediction of V1 location from cortical folds in a surface coordinate system , 2008, NeuroImage.

[58]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[59]  S. Dumoulin,et al.  Modeling center-surround configurations in population receptive fields using fMRI. , 2012, Journal of vision.

[60]  Kathleen A. Hansen,et al.  Topographic Organization in and near Human Visual Area V4 , 2007, The Journal of Neuroscience.

[61]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  Gilles Faÿ,et al.  Características inmunológicas claves en la fisiopatología de la sepsis. Infectio , 2009 .

[63]  Steen Moeller,et al.  ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging , 2014, NeuroImage.

[64]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[65]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[66]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[67]  David C Van Essen,et al.  The impact of traditional neuroimaging methods on the spatial localization of cortical areas , 2018, Proceedings of the National Academy of Sciences.

[68]  David Ress,et al.  Topography of covert visual attention in human superior colliculus. , 2010, Journal of neurophysiology.

[69]  Mark Jenkinson,et al.  Correspondences between retinotopic areas and myelin maps in human visual cortex , 2014, NeuroImage.

[70]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[71]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[72]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[73]  Marlene C. Richter,et al.  Retinotopic Organization and Functional Subdivisions of the Human Lateral Geniculate Nucleus: A High-Resolution Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[74]  Nikos K. Logothetis,et al.  A new method for estimating population receptive field topography in visual cortex , 2013, NeuroImage.

[75]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[76]  Sabine Kastner,et al.  Visual responses of the human superior colliculus: a high-resolution functional magnetic resonance imaging study. , 2005, Journal of neurophysiology.

[77]  David H. Brainard,et al.  Correction of Distortion in Flattened Representations of the Cortical Surface Allows Prediction of V1-V3 Functional Organization from Anatomy , 2014, PLoS Comput. Biol..

[78]  Matthew F. Glasser,et al.  Parcellating Cerebral Cortex: How Invasive Animal Studies Inform Noninvasive Mapmaking in Humans , 2018, Neuron.

[79]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[80]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[81]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[82]  P. Cotton,et al.  Contralateral visual hemifield representations in the human pulvinar nucleus. , 2007, Journal of neurophysiology.