Hydrate formation and its effects on the thermal expansion properties of HfMgW3O12.

HfMgW3O12 is a representative material with negative thermal expansion in the ABM3O12 (A = Zr, Hf; B = Mg, Mn, Zn, M = W, Mo) family. Herein we report a novel feature of hydration in HfMgW3O12 and its effect on the thermal expansion and its structures which have not been determined previously. It is found that hydrate formation in HfMgW3O12 occurs under ambient or moisture conditions and restrain the low energy librational and translational and even high energy bending and stretching motions of the polyhedra. The coefficient of thermal expansion could be tailored from negative to zero and positive depending on the hydration levels. The unhydrated HfMgW3O12 adopts an orthorhombic structure with space group Pna21 (33) without phase transition at least from 80 K to 573 K, but pressure-induced structure transition and amorphization are found to occur at about 0.19 Gpa and above 3.93 GPa, respectively.

[1]  Qiang Sun,et al.  Discovering Large Isotropic Negative Thermal Expansion in Framework Compound of AgB(CN)4 via the Concept of Average Atomic Volume. , 2020, Journal of the American Chemical Society.

[2]  Yun-jia Shi,et al.  Investigation on the synthesis and the mechanical and thermal expansion properties of ZrMgMo3O12 ceramic bodies , 2019, Ceramics International.

[3]  M. Gupta,et al.  Effect of hydration and ammonization on the thermal expansion behavior of ZrW2O8 : Ab initio lattice dynamical perspective , 2018, Physical Review B.

[4]  M. Gupta,et al.  Phonons and Anomalous Thermal Expansion Behaviour in Crystalline Solids , 2017, 1711.07267.

[5]  Xiansheng Liu,et al.  Avoiding the invasion of H2O into Y2Mo3O12 by coating with C3N4 to improve negative thermal expansion properties. , 2017, Physical chemistry chemical physics : PCCP.

[6]  E. Liang,et al.  A novel material of HfScW2PO12 with negative thermal expansion from 140 K to 1469 K and intense blue photoluminescence , 2017 .

[7]  Xiansheng Liu,et al.  Negative thermal expansion and photoluminescence properties in a novel material ZrScW2PO12 , 2016 .

[8]  J. Deng,et al.  New Insights into the Negative Thermal Expansion: Direct Experimental Evidence for the "Guitar-String" Effect in Cubic ScF3. , 2016, Journal of the American Chemical Society.

[9]  Xiansheng Liu,et al.  A novel material of HfScMo2VO12 with negative thermal expansion and intense white-light emission , 2016 .

[10]  Nana Yuan,et al.  Phase Transition and Negative Thermal Expansion Property of ZrMnMo3O12 , 2016 .

[11]  Xiansheng Liu,et al.  Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12 , 2016, Scientific Reports.

[12]  X. Liu,et al.  In situ investigation of the surface morphology evolution of the bulk ceramic Y2Mo3O12 during crystal water release. , 2015, Physical chemistry chemical physics : PCCP.

[13]  M. White,et al.  Zero Thermal Expansion in ZrMgMo3O12: NMR Crystallography Reveals Origins of Thermoelastic Properties , 2015 .

[14]  Qiang Sun,et al.  Theoretical study of hydration in Y2Mo3O12: Effects on structure and negative thermal expansion , 2015 .

[15]  Wei Li,et al.  Area negative thermal expansion in a beryllium borate LiBeBO3 with edge sharing tetrahedra. , 2014, Chemical communications.

[16]  Wenbo Song,et al.  Phase transition, crystal water and low thermal expansion behavior of Al2−2x(ZrMg)xW3O12·n(H2O) , 2014 .

[17]  J. Deng,et al.  Zero thermal expansion and ferromagnetism in cubic Sc(1-x)M(x)F3 (M = Ga, Fe) over a wide temperature range. , 2014, Journal of the American Chemical Society.

[18]  M. Akinc,et al.  Hydration of ZrW2O8 nanopowders under ambient conditions , 2014 .

[19]  P. Juhás,et al.  Local vibrations and negative thermal expansion in ZrW2O8. , 2014, Physical review letters.

[20]  Li Zhi-Yuan,et al.  A Negative Thermal Expansion Material of ZrMgMo3O12 , 2013 .

[21]  G. Kearley,et al.  Negative thermal expansion in LnCo(CN)6 (Ln=La, Pr, Sm, Ho, Lu, Y): mechanisms and compositional trends. , 2013, Angewandte Chemie.

[22]  E. Liang,et al.  Structures, Phase Transition, and Crystal Water of Fe2–xYxMo3O12 , 2011 .

[23]  Y. Zenitani,et al.  High Ion Conductivity in MgHf(WO4)3 Solids with Ordered Structure: 1-D Alignments of Mg2+ and Hf4+ Ions , 2011 .

[24]  J. Attfield,et al.  Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer , 2011, Nature communications.

[25]  K. Chapman,et al.  Pronounced negative thermal expansion from a simple structure: cubic ScF(3). , 2010, Journal of the American Chemical Society.

[26]  N. A. Banek,et al.  Autohydration of Nanosized Cubic Zirconium Tungstate , 2010, Journal of the American Chemical Society.

[27]  Peter L. Lee,et al.  Structural changes accompanying negative thermal expansion in Zr2(MoO4)(PO4)2 , 2009 .

[28]  M. Azuma,et al.  Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite , 2009, Nature.

[29]  R. P. Rao,et al.  Charge Transport by Polyatomic Anion Diffusion in Sc2(WO4)3 , 2008 .

[30]  A. Gindhart,et al.  Synthesis of MgHf(WO4)3 and MgZr(WO4)3 using a non-hydrolytic sol–gel method , 2008 .

[31]  Junping Wang,et al.  Effect of Water Species on the Phonon Modes in Orthorhombic Y2(MoO4)3 Revealed by Raman Spectroscopy , 2008 .

[32]  Ce Sun,et al.  Zero thermal expansion in PbTiO3-based perovskites. , 2008, Journal of the American Chemical Society.

[33]  M. Green,et al.  Polymorphism in the negative thermal expansion material magnesium hafnium tungstate , 2008 .

[34]  S. Hibble,et al.  Surprises from a simple material--the structure and properties of nickel cyanide. , 2007, Angewandte Chemie.

[35]  A. Umarji,et al.  Negative thermal expansion in rare earth molybdates , 2006 .

[36]  K. Chapman,et al.  Guest-Dependent Negative Thermal Expansion in Nanoporous Prussian Blue Analogues MIIPtIV(CN)6·x{H2O} (0 ≤ x ≤ 2; M = Zn, Cd) , 2005 .

[37]  F. Rizzo,et al.  Negative thermal expansion in Y2Mo3O12 , 2005 .

[38]  A. Umarji,et al.  Hygroscopicity and bulk thermal expansion in Y2W3O12 , 2005 .

[39]  A. Omote,et al.  Negative Thermal Expansion in (HfMg)(WO4)3 , 2004 .

[40]  A. G. S. Filho,et al.  High-pressure Raman study of Al2(WO4)3 , 2004 .

[41]  A. Sleight,et al.  Further Contraction of ZrW2O8 , 1999 .

[42]  John S. O. Evans,et al.  Negative Thermal Expansion in a Large Molybdate and Tungstate Family , 1997 .

[43]  T. Vogt,et al.  Structure of ZrV2O7from −263 to 470°C , 1997 .

[44]  John S. O. Evans,et al.  Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.

[45]  J. S. Evans,et al.  Structure of Zr2(WO4)(PO4)2 from Powder X-Ray Data: Cation Ordering with No Superstructure , 1995 .

[46]  T. Sakurai,et al.  Temperature Dependence of Vibrational Spectra in Calcite by Means of Emissivity Measurement , 1971 .

[47]  S. Nudelman,et al.  Optical properties of solids , 1969 .