Evaluation of Autothermal Peat Pyrolysis Realization for Fuel Processing Technologies

[1]  I. Shanenkov,et al.  Thermal processing of biomass into high-calorific solid composite fuel , 2017 .

[2]  S. Laitinen,et al.  Exposure to biological and chemical agents at biomass power plants , 2016 .

[3]  Wen Tong Chong,et al.  Resource assessment of the renewable energy potential for a remote area: A review , 2016 .

[4]  Omprakash Sarkar,et al.  Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. , 2016, Bioresource technology.

[5]  A. N. Tugov,et al.  All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry , 2016 .

[6]  Sergey M. Karabanov,et al.  Renewable energy efficiency , 2016, 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC).

[7]  Weitao Zhao,et al.  TG-FTIR-MS study of pyrolysis products evolving from peat. , 2016 .

[8]  Patric Kleineidam,et al.  Renewable power generation 2015: The latest World-Market Status , 2015 .

[9]  V. M. Batenin,et al.  New technologies for distributed energetics , 2015 .

[10]  Nigel Meade,et al.  Modelling European usage of renewable energy technologies for electricity generation , 2015 .

[11]  V. A. Sinel’shchikov,et al.  Effect of torrefaction on properties of solid granulated fuel of different biomass types , 2014 .

[12]  M. I. Epov,et al.  Long-term and medium-term scenarios and factors in world energy perspectives for the 21st century , 2014 .

[13]  A. Kazakov,et al.  Autothermal pyrolysis of peat in conditions of free movement in layer , 2014 .

[14]  A. Grishin,et al.  On the deepening mechanism of the site of peat combustion , 2013 .

[15]  V. Parmon,et al.  Catalytic heat-generating units for industrial heating , 2013, Catalysis in Industry.

[16]  V. M. Batenin,et al.  Pyrolytic conversion of biomass to gaseous fuel , 2012, Doklady. Chemistry.

[17]  G. Lopez,et al.  Biomass Oxidative Flash Pyrolysis: Autothermal Operation, Yields and Product Properties , 2012 .

[18]  Raf Dewil,et al.  Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction , 2010 .

[19]  Luai M. Al-Hadhrami,et al.  Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia , 2010 .

[20]  O. S. Popel’,et al.  Prospective lines of using renewable energy sources in centralized and independent power systems , 2010 .

[21]  T. Hirajima,et al.  Upgrading and dewatering of raw tropical peat by hydrothermal treatment , 2010 .

[22]  H. Baum,et al.  Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis , 2010 .

[23]  Morgan Fröling,et al.  Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies , 2008 .

[24]  Colomba Di Blasi,et al.  Modeling chemical and physical processes of wood and biomass pyrolysis , 2008 .

[25]  H. Sutcu Pyrolysis of peat: Product yield and characterization , 2007 .

[26]  K. A. Kavadias,et al.  Cost–benefit analysis of remote hybrid wind–diesel power stations: Case study Aegean Sea islands , 2007 .

[27]  Vesna B. Barisic,et al.  On changes in bed-material particles from a 550 MWth CFB boiler burning coal, bark and peat , 2007 .

[28]  A. T-Raissi,et al.  Thermodynamic analyses of hydrogen production from sub-quality natural gas: Part I: Pyrolysis and autothermal pyrolysis , 2007 .

[29]  Weiming Yi,et al.  Investigation on caloric requirement of biomass pyrolysis using TG–DSC analyzer , 2006 .

[30]  O. Misnikov Physicochemical principles of hydrophobization of mineral binders by additives produced from peat raw material , 2006 .

[31]  A. Grishin,et al.  Experimental determination of thermophysical, thermokinetic, and filtration characteristics of peat , 2006 .

[32]  Mikko Hupa,et al.  Fouling tendency of ash resulting from burning mixtures of biofuels. Part 1: Deposition rates , 2006 .

[33]  M. Hupa,et al.  Fouling Tendency of Ash Resulting From Burning Mixtures of Biofuels , 2005 .

[34]  C. Blasi,et al.  Thermogravimetric Analysis and Devolatilization Kinetics of Wood , 2002 .

[35]  K. D. Young,et al.  Glass Transition Behavior in a Peat Humic Acid and an Aquatic Fulvic Acid , 2000 .

[36]  Morten Grønli,et al.  Mathematical Model for Wood PyrolysisComparison of Experimental Measurements with Model Predictions , 2000 .

[37]  Anders Nordin,et al.  Chemical elemental characteristics of biomass fuels , 1994 .

[38]  Esa Kurkela,et al.  Air gasification of peat, wood and brown coal in a pressurized fluidized-bed reactor. I. Carbon conversion, gas yields and tar formation , 1992 .

[39]  E. Kurkela,et al.  Air gasification of peat, wood and brown coal in a pressurized fluidized-bed reactor. II. Formation of nitrogen compounds , 1992 .