On the Diophantine equation (xn - 1)/(x-1) = yq

[1]  Michael A. Bennett,et al.  Rational Approximation to Algebraic Numbers of Small Height : the Diophantine Equation Jax N ? by N J = 1 , 2007 .

[2]  Maurice Mignotte,et al.  On integers with identical digits , 1999 .

[3]  T. N. Shorey,et al.  The equation formula here has no solution with x square , 1999, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Y. Bugeaud Linear forms in p-adic logarithms and the Diophantine equation formula here , 1999, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  T. N. Shorey,et al.  The equation xn−1/x−1= yq with x square , 1999, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Y. Bugeaud,et al.  Minoration effective de la distancep-adique entre puissances de nombres algébriques , 1996 .

[7]  Josemir W Sander Irrationality Criteria for Mahler′s Numbers , 1995 .

[8]  H. M. Edgar Problems and some results concerning the Diophantine equations , 1985 .

[9]  R. Guralnick Subgroups of prime power index in a simple group , 1983 .

[10]  T. Shorey,et al.  New applications of Diophantine approximations to Diophantine equations. , 1976 .

[11]  Benne de Weger,et al.  On the Diophantine equation |axn - byn | = 1 , 1998, Math. Comput..

[12]  M. Le,et al.  On the diophantine equation $(x^m-1)/(x-1) = y^n$ , 1995 .

[13]  M. Le A note on perfect powers of the form $x^{m-1} + ... + x + 1$ , 1995 .

[14]  M. Le A note on the diophantine equation (x^m-1)/(x-1) = y^n , 1993 .