When are Swing options bang-bang and how to use it

In this paper we investigate a class of swing options with firm constraints in view of the modeling of supply agreements. We show, for a fully general payoff process, that the premium, solution to a stochastic control problem, is concave and piecewise affine as a function of the global constraints of the contract. The existence of bang-bang optimal controls is established for a set of constraints which generates by affinity the whole premium function. When the payoff process is driven by an underlying Markov process, we propose a quantization based recursive backward procedure to price these contracts. A priori error bounds are established, uniformly with respect to the global constraints.

[1]  G. Pagès,et al.  Error analysis of the optimal quantization algorithm for obstacle problems , 2003 .

[2]  Harald Luschgy,et al.  DISTORTION MISMATCH IN THE QUANTIZATION OF PROBABILITY MEASURES , 2006, math/0602381.

[3]  Michael Ludkovski,et al.  Optimal Switching with Applications to Energy Tolling Agreements , 2005 .

[4]  G. Pagès,et al.  A QUANTIZATION TREE METHOD FOR PRICING AND HEDGING MULTIDIMENSIONAL AMERICAN OPTIONS , 2005 .

[5]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[6]  G. Pagès,et al.  A quantization algorithm for solving multi-dimensional Optimal Stopping problems , 2007 .

[7]  Edward C. Waymire,et al.  A self-similar invariance of critical binary Galton-Watson trees , 2000 .

[8]  R. Carmona,et al.  OPTIMAL MULTIPLE STOPPING AND VALUATION OF SWING OPTIONS , 2008 .

[9]  Savas Dayanik,et al.  OPTIMAL MULTIPLE-STOPPING OF LINEAR DIFFUSIONS AND SWING OPTIONS , 2003 .

[10]  Harald Luschgy,et al.  Functional quantization rate and mean regularity of processes with an application to Lévy processes , 2008 .

[11]  Rémi Munos,et al.  Numerical Methods for the Pricing of Swing Options: A Stochastic Control Approach , 2006 .

[12]  Gillis Pagés,et al.  A space quantization method for numerical integration , 1998 .

[13]  Gilles Pagès,et al.  Optimal Quantization for Finance: From Random Vectors to Stochastic Processes , 2009 .

[14]  A. C. Thompson Valuation of Path-Dependent Contingent Claims with Multiple Exercise Decisions over Time: The Case of Take-or-Pay , 1995, Journal of Financial and Quantitative Analysis.

[15]  J. Keppo Pricing of Electricity Swing Options , 2004 .

[16]  Paul L. Zador,et al.  Asymptotic quantization error of continuous signals and the quantization dimension , 1982, IEEE Trans. Inf. Theory.

[17]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[18]  Martina Wilhelm,et al.  Finite element valuation of swing options , 2008 .

[19]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[20]  Gilles Pagès,et al.  Optimal quadratic quantization for numerics: the Gaussian case , 2003, Monte Carlo Methods Appl..

[21]  René Carmona,et al.  Gas Storage and Supply Guarantees : An Optimal Switching Approach , 2005 .

[22]  Jacques Printems,et al.  A stochastic quantization method for nonlinear problems , 2001, Monte Carlo Methods Appl..

[23]  Dimitri P. Bertsekas,et al.  Stochastic optimal control : the discrete time case , 2007 .

[24]  G. Pagès,et al.  AN OPTIMAL MARKOVIAN QUANTIZATION ALGORITHM FOR MULTI-DIMENSIONAL STOCHASTIC CONTROL PROBLEMS , 2004 .

[25]  Gilles Pagès,et al.  Optimal Quantization for the Pricing of Swing Options , 2007, 0705.2110.

[26]  N. Meinshausen,et al.  MONTE CARLO METHODS FOR THE VALUATION OF MULTIPLE‐EXERCISE OPTIONS , 2004 .

[27]  R. Carmona,et al.  Pricing Asset Scheduling Flexibility using Optimal Switching , 2008 .

[28]  H. Geman Commodities and Commodity Derivatives: Modelling and Pricing for Agriculturals, Metals and Energy , 2005 .

[29]  A. Lari-Lavassani,et al.  A DISCRETE VALUATION OF SWING OPTIONS , 2002 .

[30]  Patrick Jaillet,et al.  Valuation of Commodity-Based Swing Options , 2004, Manag. Sci..

[31]  S. Graf,et al.  Foundations of Quantization for Probability Distributions , 2000 .

[32]  G. Pagès,et al.  Optimal quantization methods and applications to numerical problems in finance , 2004 .