Dependence of chromatic responses in V1 on visual field eccentricity and spatial frequency: an fMRI study.

Psychophysical sensitivity to red-green chromatic modulation decreases with visual eccentricity, compared to sensitivity to luminance modulation, even after appropriate stimulus scaling. This is likely to occur at a central, rather than a retinal, site. Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to stimuli designed to separately stimulate different afferent channels' [red-green, luminance, and short-wavelength (S)-cone] circular gratings were recorded as a function of visual eccentricity (±10  deg) and spatial frequency (SF) in human primary visual cortex (V1) and further visual areas (V2v, V3v). In V1, the SF tuning of BOLD fMRI responses became coarser with eccentricity. For red-green and luminance gratings, similar SF tuning curves were found at all eccentricities. The pattern for S-cone modulation differed, with SF tuning changing more slowly with eccentricity than for the other two modalities. This may be due to the different retinal distribution with eccentricity of this receptor type. A similar pattern held in V2v and V3v. This would suggest that transformation or spatial filtering of the chromatic (red-green) signal occurs beyond these areas.

[1]  Paul R. Martin,et al.  Distribution and specificity of S-cone (“blue cone”) signals in subcortical visual pathways , 2014, Visual Neuroscience.

[2]  Barry B. Lee,et al.  Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  I. Rentschler,et al.  Peripheral vision and pattern recognition: a review. , 2011, Journal of vision.

[4]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[5]  Barry B. Lee,et al.  Responses of primate retinal ganglion cells to perimetric stimuli. , 2011, Investigative ophthalmology & visual science.

[6]  D. Dacey,et al.  Horizontal Cell Feedback without Cone Type-Selective Inhibition Mediates “Red–Green” Color Opponency in Midget Ganglion Cells of the Primate Retina , 2011, The Journal of Neuroscience.

[7]  Barry B. Lee,et al.  Segregation of chromatic and luminance signals using a novel grating stimulus , 2011, The Journal of physiology.

[8]  Barry B. Lee Visual pathways and psychophysical channels in the primate , 2011, The Journal of physiology.

[9]  R. Hess,et al.  Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: an fMRI study. , 2010, Journal of vision.

[10]  Paul R. Martin,et al.  Retinal connectivity and primate vision , 2010, Progress in Retinal and Eye Research.

[11]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[12]  L. Fontana,et al.  Deep Stromal Dissection for Endothelial Keratoplasty Obtained With a Femtosecond Laser and a Microkeratome With Different Head Advancement Speeds. A Scanning Electron Microscopy Study , 2010 .

[13]  Dany Vijay D'Souza,et al.  An fMRI study of chromatic processing in humans , 2009 .

[14]  B. Spehar,et al.  The Foveal Confluence in Human Visual Cortex , 2009, The Journal of Neuroscience.

[15]  Serge O Dumoulin,et al.  Color responses of the human lateral geniculate nucleus: selective amplification of S-cone signals between the lateral geniculate nucleno and primary visual cortex measured with high-field fMRI , 2008, The European journal of neuroscience.

[16]  Alex R. Wade,et al.  fMRI measurements of color in macaque and human. , 2008, Journal of vision.

[17]  A. Hyvärinen,et al.  Spatial frequency tuning in human retinotopic visual areas. , 2008, Journal of vision.

[18]  Barry B. Lee,et al.  Responses of Retinal Ganglion Cells to Perimetric Stimuli , 2008 .

[19]  Barry B. Lee Neural models and physiological reality , 2008, Visual Neuroscience.

[20]  Kathleen A. Hansen,et al.  Topographic Organization in and near Human Visual Area V4 , 2007, The Journal of Neuroscience.

[21]  Alex R. Wade,et al.  Two-dimensional mapping of the central and parafoveal visual field to human visual cortex. , 2007, Journal of neurophysiology.

[22]  R. Hess,et al.  Selectivity of human retinotopic visual cortex to S‐cone‐opponent, L/M‐cone‐opponent and achromatic stimulation , 2007, The European journal of neuroscience.

[23]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[24]  A. James,et al.  Retinotopic distribution of chromatic responses in human primary visual cortex , 2006, The European journal of neuroscience.

[25]  Barry B. Lee,et al.  Specificity of cone inputs to macaque retinal ganglion cells. , 2006, Journal of neurophysiology.

[26]  Alex R. Wade,et al.  Extended Concepts of Occipital Retinotopy , 2005 .

[27]  Xavier Golay,et al.  Retinotopic mapping in the human visual cortex using vascular space occupancy-dependent functional magnetic resonance imaging , 2005, Neuroreport.

[28]  K. Mullen,et al.  Does L/M Cone Opponency Disappear in Human Periphery? , 2005, Perception.

[29]  David Whitaker,et al.  Functional evidence for cone‐specific connectivity in the human retina , 2005, The Journal of physiology.

[30]  Paul R. Martin,et al.  Chromatic Organization of Ganglion Cell Receptive Fields in the Peripheral Retina , 2005, The Journal of Neuroscience.

[31]  B. Wandell,et al.  Specializations for Chromatic and Temporal Signals in Human Visual Cortex , 2005, The Journal of Neuroscience.

[32]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[33]  Rhea T Eskew,et al.  Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity. , 2003, Visual neuroscience.

[34]  Jens Frahm,et al.  Functional somatotopy of finger representations in human primary motor cortex , 2003, Human brain mapping.

[35]  L. Jäncke,et al.  Calibrated LCD/TFT stimulus presentation for visual psychophysics in fMRI , 2002, Journal of Neuroscience Methods.

[36]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  R. Shapley,et al.  Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[38]  K. Mullen,et al.  Differential distributions of red–green and blue–yellow cone opponency across the visual field , 2002, Visual Neuroscience.

[39]  Barry B. Lee,et al.  Chromatic sensitivity of ganglion cells in the peripheral primate retina , 2001, Nature.

[40]  A. T. Smith,et al.  Spatiotemporal Frequency and Direction Sensitivities of Human Visual Areas Measured Using fMRI , 2000, NeuroImage.

[41]  John S. Werner,et al.  Spatial summation in human cone mechanisms from 0° to 20° in the superior retina , 2000 .

[42]  W. Singer,et al.  The Myth of Upright Vision. A Psychophysical and Functional Imaging Study of Adaptation to Inverting Spectacles , 1999, Perception.

[43]  B. B. Lee,et al.  Receptive fields of primate retinal ganglion cells studied with a novel technique , 1998, Visual Neuroscience.

[44]  S. Engel,et al.  Colour tuning in human visual cortex measured with functional magnetic resonance imaging , 1997, Nature.

[45]  Jens Frahm,et al.  Functional mapping of color processing by magnetic resonance imaging of responses to selective P- and M-pathway stimulation , 1996, Experimental Brain Research.

[46]  K. Mullen,et al.  Losses in Peripheral Colour Sensitivity Predicted from “Hit and Miss” Post-receptoral Cone Connections , 1996, Vision Research.

[47]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[48]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[50]  E. DeYoe,et al.  Functional magnetic resonance imaging (FMRI) of the human brain , 1994, Journal of Neuroscience Methods.

[51]  David J. Calkins,et al.  M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses , 1994, Nature.

[52]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[53]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[54]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[55]  B. Boycott,et al.  Parasol (Pα) ganglion-cells of the primate fovea: Immunocytochemical staining with antibodies against GABAA-receptors , 1993, Vision Research.

[56]  Rhea T. Eskew,et al.  Peripheral chromatic sensitivity for flashes: A post-peceptoral red-green asymmetry , 1992, Vision Research.

[57]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[58]  K. Mullen,et al.  Colour vision as a post-receptoral specialization of the central visual field , 1991, Vision Research.

[59]  A. Milam,et al.  Distribution and morphology of human cone photoreceptors stained with anti‐blue opsin , 1991, The Journal of comparative neurology.

[60]  R. Hess,et al.  Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors. , 1991, The Journal of physiology.

[61]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[62]  I. Abramov,et al.  Color appearance in the peripheral retina: effects of stimulus size. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[63]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[64]  R Näsänen,et al.  Cortical magnification and peripheral vision. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[65]  A B Watson,et al.  Estimation of local spatial scale. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[66]  S. Klein,et al.  Vernier acuity, crowding and cortical magnification , 1985, Vision Research.

[67]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[68]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[69]  J. Koenderink,et al.  Sensitivity to spatiotemporal colour contrast in the peripheral visual field , 1983, Vision Research.

[70]  Trichur Raman Vidyasagar,et al.  The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings. , 1983, The Journal of physiology.

[71]  M. A. Bouman,et al.  Perimetry of contrast detection thresholds of moving spatial sine wave patterns. I. The near peripheral visual field (eccentricity 0 degrees-8 degrees). , 1978, Journal of the Optical Society of America.

[72]  Jan J. Koenderink,et al.  Perimetry of contrast detection thresholds of moving spatial sine wave patterns. II. The far peripheral visual field (eccentricity 0°–50°) , 1978 .

[73]  M. A. Bouman,et al.  Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target extent as a sensitivity controlling parameter. , 1978, Journal of the Optical Society of America.

[74]  I. Abramov,et al.  Color vision in the peripheral retina. I. Spectral sensitivity. , 1977, Journal of the Optical Society of America.

[75]  I Abramov,et al.  Color vision in the peripheral retina. II. Hue and saturation. , 1977, Journal of the Optical Society of America.

[76]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[77]  B. Boycott,et al.  Organization of the Primate Retina: Light Microscopy , 1969 .

[78]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[79]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[80]  F. W. Weymouth Visual sensory units and the minimal angle of resolution. , 1958, American journal of ophthalmology.

[81]  B. Meyerand Functional Magnetic Resonance Imaging ( FMRI ) , 2007 .

[82]  Gary S. Settles,et al.  Full-scale schlieren visualization of supersonic bullet and muzzle blast from firing a .30-06 rifle , 2005, J. Vis..

[83]  S. Yasuda,et al.  Separation process of two-phase fluids , 2005, J. Vis..

[84]  A. Cowey,et al.  Human cortical magnification factor and its relation to visual acuity , 2004, Experimental Brain Research.

[85]  J. Rovamo,et al.  Visual resolution, contrast sensitivity, and the cortical magnification factor , 2004, Experimental Brain Research.

[86]  J. Rovamo,et al.  An estimation and application of the human cortical magnification factor , 2004, Experimental Brain Research.

[87]  R. L. de Valois,et al.  Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. , 1974, Vision research.

[88]  R. L. Valois,et al.  Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. , 1974, Vision research.

[89]  K. Gegenfurtner,et al.  Color perception in the intermediate periphery of the visual field , 2022 .