Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors

Oxygen permeation and partial oxidation of methane (POM) were investigated in 75 wt.% Ce(0.85)Sm(0.15) O(1.925)-25 wt.% Sm(0.6)Sr(0.4)FeO(3-delta) (SDC-SSF) dual-phase composite membrane reactors. The dual-phase membrane prepared via a one-pot method comprises a fluorite-type oxide ionic conductor (SDC) for the transport of oxide ions and a perovskite-type mixed conductor (SSF) for the transport of both oxide ions and electrons. X-ray diffraction (XRD) results reveal good phase compatibility between the fluorite and perovskite oxides even after sintered at high temperature. The oxygen permeation flux increased with time in the initial stage, from 0.23 to 0.5 cm(3) cm(-2) min(-1) in the first 18 h. Once a steady state was reached, the permeation flux remained constant in the investigated period (> 500 h). Long-term operation of POM reaction was successfully achieved in dual-phase membrane reactors, and methane conversion and CO selectivity >98% were obtained for pure methane as the feed. XRD, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX) characterizations reveal good structural stability for the dual-phase membrane, even after long-term operation under syngas production conditions. (C) 2010 Elsevier B.V. All rights reserved.

[1]  Meilin Liu,et al.  Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs , 2002 .

[2]  A. Kovalevsky,et al.  Mixed electronic and ionic conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni): IV. Effect of preparation method on oxygen transport in LaCoO3−δ , 2000 .

[3]  Xuefeng Zhu,et al.  Syngas generation in a membrane reactor with a highly stable ceramic composite membrane , 2008 .

[4]  M. Islam,et al.  Defect chemistry and surface properties of LaCoO3 , 2000 .

[5]  P. Dyer,et al.  Ion transport membrane technology for oxygen separation and syngas production , 2000 .

[6]  Roger B. Poeppel,et al.  Dense ceramic membranes for partial oxidation of methane to syngas , 1995 .

[7]  George R. Gavalas,et al.  Oxygen selective ceramic hollow fiber membranes , 2005 .

[8]  A. Kovalevsky,et al.  Oxygen transport in Ce0.8Gd0.2O2−δ-based composite membranes , 2003 .

[9]  Haihui Wang,et al.  Structural stability and oxygen permeability of cerium lightly doped BaFeO3−δ ceramic membranes , 2006 .

[10]  W. Thomson,et al.  Stability of La0.6Sr0.4Co0.2Fe0.8O3-δ perovskite membranes in reducing and nonreducing environments , 1998 .

[11]  T. Inagaki,et al.  Effect of Gallia Addition on the Sintering Behavior of Samaria‐Doped Ceria , 2004 .

[12]  L. Gauckler,et al.  Sintering and properties of nanosized ceria solid solutions , 2000 .

[13]  Noboru Yamazoe,et al.  OXYGEN PERMEATION THROUGH PEROVSKITE-TYPE OXIDES , 1985 .

[14]  Xuefeng Zhu,et al.  Oxygen permeability and structural stability of BaCe0.15Fe0.85O3−δ membranes , 2006 .

[15]  Zongping Shao,et al.  Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane , 2000 .

[16]  J. Yi,et al.  Oxygen permeation through a Ce0.8Sm0.2O2−δ–La0.8Sr0.2CrO3−δ dual-phase composite membrane , 2006 .

[17]  Haihui Wang,et al.  Relationship between homogeneity and oxygen permeability of composite membranes , 2008 .

[18]  Changrong Xia,et al.  Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing , 2001 .

[19]  John A. Kilner,et al.  Optimisation of composite cathodes for intermediate temperature SOFC applications , 1999 .

[20]  H. Suda,et al.  Initiation of oxygen permeation and POM reaction in different mixed conducting ceramic membrane reactors , 2006 .

[21]  Michael Francis Carolan,et al.  ITM Syngas ceramic membrane technology for synthesis gas production , 2004 .

[22]  V. Kharton,et al.  Materials of high-temperature electrochemical oxygen membranes , 1996 .

[23]  Haihui Wang,et al.  Partial oxidation of methane to syngas in BaCe0.15Fe0.85O3−δ membrane reactors , 2006 .

[24]  A. Jacobson,et al.  Electrical conductivity and oxygen permeation of Ag/BaBi8O13 composites , 2000 .

[25]  M. Islam,et al.  Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite , 2004 .

[26]  T. Kudo,et al.  Oxygen Ion Conduction of the Fluorite‐Type Ce1 − x Ln x O 2 − x / 2 ( Ln = Lanthanoid Element ) , 1975 .

[27]  Henricus J.M. Bouwmeester,et al.  Dense ceramic membranes for methane conversion , 2003 .

[28]  Haihui Wang,et al.  Development and Application of Oxygen Permeable Membrane in Selective Oxidation of Light Alkanes , 2005 .

[29]  Y. S. Lin,et al.  Tubular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas , 2000 .

[30]  J. Caro,et al.  Perovskite hollow-fiber membranes for the production of oxygen-enriched air. , 2005, Angewandte Chemie.

[31]  Yufeng He,et al.  Partial oxidation of methane in BaCe0.1Co0.4Fe0.5O3−δ membrane reactor , 2010 .

[32]  B. Boukamp,et al.  Microstructural development, electrical properties and oxygen permeation of zirconia-palladium composites , 1995 .

[33]  Xuefeng Zhu,et al.  Composite membrane based on ionic conductor and mixed conductor for oxygen permeation , 2008 .

[34]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[35]  A. Kovalevsky,et al.  Oxygen Permeability of Ce0.8Gd0.2 O 2 − δ ‐ La0.7Sr0.3MnO3 − δ Composite Membranes , 2000 .

[36]  R. B. Poeppel,et al.  Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas , 1994 .

[37]  R. Cai,et al.  Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation , 2002 .

[38]  F. Snijkers,et al.  Processing, stability and oxygen permeability of Sr(Fe, Al)O3-based ceramic membranes , 2005 .