A Robust Algorithm for Power System State Estimation With Equality Constraints

This paper presents a robust method for the solution of the power system state estimation with equality constraints. The existing methods formulate coefficient matrices which are symmetric and indefinite and require factorization routines with additional logic to process the zero pivots. In this paper the formulated coefficient matrix has unique triangular factorization which can be accomplished symbolically using only the sparsity criterion. The method is illustrated with the IEEE 14-bus system. Test results are given with the FRCC 3949-bus system.

[1]  F. Broussolle,et al.  State Estimation in Power Systems: Detecting Bad Data through the Sparse Inverse Matrix Method , 1978, IEEE Transactions on Power Apparatus and Systems.

[2]  George N. Korres,et al.  A reduced model for power system observability: analysis and restoration , 1988 .

[3]  G. N. Korres,et al.  A NEW METHOD FOR TREATMENT OF EQUALITY CONSTRAINTS IN POWER SYSTEM STATE ESTIMATION , 2008 .

[4]  Felix F. Wu,et al.  Observability analysis and bad data processing for state estimation using Hachtel's augmented matrix method , 1988 .

[5]  Vladimir Brandwajn,et al.  Partial Matrix Refactorization , 1986, IEEE Transactions on Power Systems.

[6]  Felix F. Wu,et al.  Observability analysis and bad data processing for state estimation with equality constraints , 1988 .

[7]  W. Marsden I and J , 2012 .

[8]  A. Monticelli,et al.  Fast Decoupled State Estimation and Bad Data Processing , 1979, IEEE Transactions on Power Apparatus and Systems.

[9]  Barry W. Peyton,et al.  Block sparse Cholesky algorithms on advanced uniprocessor computers , 1991 .

[10]  K. D. Frey,et al.  Treatment of inequality constraints in power system state estimation , 1995 .

[11]  G. N. Korres,et al.  A Robust Method for Equality Constrained State Estimation , 2001, IEEE Power Engineering Review.

[12]  M. Gilles,et al.  Observability and bad data analysis using augmented blocked matrices (power system analysis computing) , 1993 .

[13]  I. Duff,et al.  The factorization of sparse symmetric indefinite matrices , 1991 .

[14]  V. Quintana,et al.  An Orthogonal Row Processing Algorithm for Power System Sequential State Estimation , 1981, IEEE Transactions on Power Apparatus and Systems.

[15]  S. Soliman,et al.  Power System State Estimation with Equality Constraints , 1992 .

[16]  R. Burchett,et al.  A new method for solving equality-constrained power system static-state estimation , 1990 .

[17]  G. Krumpholz,et al.  Power System State Estimation Residual Analysis: An Algorithm Using Network Topology , 1981, IEEE Transactions on Power Apparatus and Systems.

[18]  Miroslav Tuma,et al.  A Note on the LDLT Decomposition of Matrices from Saddle-Point Problems , 2001, SIAM J. Matrix Anal. Appl..

[19]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[20]  Ali Abur,et al.  Least absolute value state estimation with equality and inequality constraints , 1993 .

[21]  W. Tinney,et al.  State estimation using augmented blocked matrices , 1990 .

[22]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part I: Exact Model , 1970 .

[23]  X. Rong Li,et al.  State estimation with nonlinear inequality constraints based on unscented transformation , 2011, 14th International Conference on Information Fusion.

[24]  E. Kliokys,et al.  Minimum correction method for enforcing limits and equality constraints in state estimation based on orthogonal transformations , 2000 .

[25]  F. Alvarado,et al.  Constrained LAV state estimation using penalty functions , 1997 .

[26]  Lars Holten,et al.  Hachtel's Augmented Matrix Method - A Rapid Method Improving Numerical Stability in Power System Static State Estimation , 1985, IEEE Power Engineering Review.

[27]  M. Gilles,et al.  A blocked sparse matrix formulation for the solution of equality-constrained state estimation , 1991, IEEE Power Engineering Review.