Amplifying the redistribution of somato-dendritic inhibition by the interplay of three interneuron types

GABAergic interneurons play an important role in shaping the activity of excitatory pyramidal cells (PCs). How the various inhibitory cell types contribute to neuronal information processing, however, is not resolved. Here, we propose a functional role for a widespread network motif consisting of parvalbumin- (PV), somatostatin- (SOM) and vasoactive intestinal peptide (VIP)-expressing interneurons. Following the idea that PV and SOM interneurons control the distribution of somatic and dendritic inhibition onto PCs, we suggest that mutual inhibition between VIP and SOM cells translates weak inputs to VIP interneurons into large changes of somato-dendritic inhibition of PCs. Using a computational model, we show that the neuronal and synaptic properties of the circuit support this hypothesis. Moreover, we demonstrate that the SOM-VIP motif allows transient inputs to persistently switch the circuit between two processing modes, in which top-down inputs onto apical dendrites of PCs are either integrated or cancelled.

[1]  D. Wolpert,et al.  Principles of sensorimotor learning , 2011, Nature Reviews Neuroscience.

[2]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[3]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[4]  M. Diamond Somatosensory Thalamus of the Rat , 1995 .

[5]  Gord Fishell,et al.  Genetic and activity-dependent mechanisms underlying interneuron diversity , 2017, Nature Reviews Neuroscience.

[6]  Lisa M. Giocomo,et al.  Neuromodulation by Glutamate and Acetylcholine can Change Circuit Dynamics by Regulating the Relative Influence of Afferent Input and Excitatory Feedback , 2007, Molecular Neurobiology.

[7]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[9]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[10]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[11]  Adam Kepecs,et al.  From circuit motifs to computations: mapping the behavioral repertoire of cortical interneurons , 2014, Current Opinion in Neurobiology.

[12]  Jens Kremkow,et al.  In Vivo Monosynaptic Excitatory Transmission between Layer 2 Cortical Pyramidal Neurons , 2015, Cell reports.

[13]  Oscar Marín,et al.  Interneuron dysfunction in psychiatric disorders , 2012, Nature Reviews Neuroscience.

[14]  Andreas Lüthi,et al.  Disinhibition, a Circuit Mechanism for Associative Learning and Memory , 2015, Neuron.

[15]  Aurélie Pala,et al.  In Vivo Measurement of Cell-Type-Specific Synaptic Connectivity and Synaptic Transmission in Layer 2/3 Mouse Barrel Cortex , 2015, Neuron.

[16]  J. Staiger,et al.  Parvalbumin- and vasoactive intestinal polypeptide-expressing neocortical interneurons impose differential inhibition on Martinotti cells , 2016, Nature Communications.

[17]  D. Prince,et al.  Cholinergic switching within neocortical inhibitory networks. , 1998, Science.

[18]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[19]  Idan Segev,et al.  Principles Governing the Operation of Synaptic Inhibition in Dendrites , 2012, Neuron.

[20]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[21]  L. Gentet Functional diversity of supragranular GABAergic neurons in the barrel cortex , 2012, Front. Neural Circuits.

[22]  Alison L. Barth,et al.  Neocortical Somatostatin Neurons Reversibly Silence Excitatory Transmission via GABAb Receptors , 2015, Current Biology.

[23]  G. Fishell,et al.  A disinhibitory circuit mediates motor integration in the somatosensory cortex , 2013, Nature Neuroscience.

[24]  Mriganka Sur,et al.  An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity , 2015, Nature Neuroscience.

[25]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[26]  Jason C. Wester,et al.  Behavioral state-dependent modulation of distinct interneuron subtypes and consequences for circuit function , 2014, Current Opinion in Neurobiology.

[27]  B W Connors,et al.  Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I , 1998, The Journal of comparative neurology.

[28]  Georg B. Keller,et al.  Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse , 2012, Neuron.

[29]  W. Senn,et al.  Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons. , 2006, Journal of neurophysiology.

[30]  J. Trachtenberg,et al.  An inhibitory pull-push circuit in frontal cortex , 2017, Nature Neuroscience.

[31]  Yoshua Bengio,et al.  Dendritic error backpropagation in deep cortical microcircuits , 2017, ArXiv.

[32]  Rafael Yuste,et al.  Cooperative Subnetworks of Molecularly Similar Interneurons in Mouse Neocortex , 2016, Neuron.

[33]  Z. J. Huang,et al.  Differential activity-dependent, homeostatic plasticity of two neocortical inhibitory circuits. , 2008, Journal of neurophysiology.

[34]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[35]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[36]  G. Stuart,et al.  Dependence of EPSP Efficacy on Synapse Location in Neocortical Pyramidal Neurons , 2002, Science.

[37]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[38]  Mriganka Sur,et al.  Response-dependent dynamics of cell-specific inhibition in cortical networks in vivo , 2014, Nature Communications.

[39]  Alexander Attinger,et al.  Visuomotor Coupling Shapes the Functional Development of Mouse Visual Cortex , 2017, Cell.

[40]  Henning Sprekeler,et al.  Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons , 2016, PLoS Comput. Biol..

[41]  Xiao-Jing Wang,et al.  A dendritic disinhibitory circuit mechanism for pathway-specific gating , 2016, Nature Communications.

[42]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[43]  Jordan M. Sorokin,et al.  Brain-Wide Maps of Synaptic Input to Cortical Interneurons , 2016, The Journal of Neuroscience.

[44]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[45]  Sander W. Keemink,et al.  Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex , 2016, eLife.

[46]  Peter Jonas,et al.  Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function , 2014, Science.

[47]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[48]  Jorge F Mejias,et al.  Paradoxical response reversal of top-down modulation in cortical circuits with three interneuron types. , 2017, eLife.

[49]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[50]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[51]  Bartlett W. Mel,et al.  Location-Dependent Effects of Inhibition on Local Spiking in Pyramidal Neuron Dendrites , 2012, PLoS Comput. Biol..

[52]  William Muñoz,et al.  Spatiotemporal specificity in cholinergic control of neocortical function , 2014, Current Opinion in Neurobiology.

[53]  Rafael Yuste,et al.  Ca2+ accumulations in dendrites of neocortical pyramidal neurons: An apical band and evidence for two functional compartments , 1994, Neuron.

[54]  Brent Doiron,et al.  Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes. , 2016, Journal of neurophysiology.

[55]  Alison L. Barth,et al.  Somatostatin-expressing neurons in cortical networks , 2016, Nature Reviews Neuroscience.

[56]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[57]  Michael W. Spratling Cortical region interactions and the functional role of apical dendrites. , 2002, Behavioral and cognitive neuroscience reviews.

[58]  W. Gerstner,et al.  Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. , 2012, Journal of neurophysiology.

[59]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Richard Naud,et al.  Sparse bursts optimize information transmission in a multiplexed neural code , 2018, Proceedings of the National Academy of Sciences.

[61]  David Golomb,et al.  LTS and FS Inhibitory Interneurons, Short-Term Synaptic Plasticity, and Cortical Circuit Dynamics , 2011, PLoS Comput. Biol..

[62]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[63]  M. Hasselmo Neuromodulation and cortical function: modeling the physiological basis of behavior , 1995, Behavioural Brain Research.

[64]  Timothy P Lillicrap,et al.  Towards deep learning with segregated dendrites , 2016, eLife.

[65]  Y. Dan,et al.  Long-range and local circuits for top-down modulation of visual cortex processing , 2014, Science.

[66]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[67]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[68]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[69]  Xiao-Jing Wang,et al.  A disinhibitory circuit motif and flexible information routing in the brain , 2018, Current Opinion in Neurobiology.

[70]  T Allison,et al.  Contextual guidance of attention: human intracranial event-related potential evidence for feedback modulation in anatomically early temporally late stages of visual processing. , 2001, Brain : a journal of neurology.

[71]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[72]  Arno C. Schmitt,et al.  Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A , 2011, Proceedings of the National Academy of Sciences.

[73]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[74]  Stefan Mihalas,et al.  Visual processing mode switching regulated by VIP cells , 2017, bioRxiv.

[75]  B. Sakmann,et al.  Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[76]  J. Silvester Determinants of block matrices , 2000, The Mathematical Gazette.

[77]  Konrad P. Körding,et al.  Integrating Top-Down and Bottom-Up Sensory Processing by Somato-Dendritic Interactions , 2004, Journal of Computational Neuroscience.

[78]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[79]  Xiaoqin Wang,et al.  Neural substrates of vocalization feedback monitoring in primate auditory cortex , 2008, Nature.

[80]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[81]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[82]  Georg B. Keller,et al.  Neural processing of auditory feedback during vocal practice in a songbird , 2009, Nature.

[83]  B. Hangya,et al.  Distinct behavioural and network correlates of two interneuron types in prefrontal cortex , 2013, Nature.

[84]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.