A Class of Biased Estimators in Linear Regression

Biased estimators of the coefficients in the linear regression model have been the subject of considerable discussion in the recent, literature. The purpose of this paper is to provide a unified approach to the study of biased estimators in an effort to determine their relative merits. The class of estimators includes the simple and the generalized ridge estimators proposed by Hoerl and Kennard [9], the principal component estimator with extensions such as that, proposed by Marquardt [19] and the shrunken estimator proposed by Stein [23]. The problem of estimating the biasing parameters is considered and illustrated with two examples.

[1]  Lawrence S. Mayer,et al.  On Biased Estimation in Linear Models , 1973 .

[2]  G. C. McDonald,et al.  A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .

[3]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[4]  J. N. R. Jeffers,et al.  Two Case Studies in the Application of Principal Component Analysis , 1967 .

[5]  A. E. Hoerl,et al.  Ridge regression:some simulations , 1975 .

[6]  William F. Lott The optimal set of principal component restrictions on a least-squares regression , 1973 .

[7]  M. Kendall A course in multivariate analysis , 1958 .

[8]  W. Hemmerle An Explicit Solution for Generalized Ridge Regression , 1975 .

[9]  J. T. Webster,et al.  Latent Root Regression Analysis , 1974 .

[10]  G. C. McDonald,et al.  Instabilities of Regression Estimates Relating Air Pollution to Mortality , 1973 .

[11]  D. Hawkins Relations Between Ridge Regression and Eigenanalysis of the Augmented Correlation Matrix , 1975 .

[12]  W. Massy Principal Components Regression in Exploratory Statistical Research , 1965 .

[13]  R. R. Hocking The analysis and selection of variables in linear regression , 1976 .

[14]  R. Farebrother The Minimum Mean Square Error Linear Estimator and Ridge Regression , 1975 .

[15]  Stanley L. Sclove,et al.  Improved Estimators for Coefficients in Linear Regression , 1968 .

[16]  Donald W. Marquaridt Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .

[17]  W. R. Buckland,et al.  Contributions to Probability and Statistics , 1960 .

[18]  Douglas M. Hawkins,et al.  On the Investigation of Alternative Regressions by Principal Component Analysis , 1973 .

[19]  D. Conniffe,et al.  A Critical View of Ridge Regression , 1973 .

[20]  A. E. Hoerl,et al.  Ridge regression iterative estimation of the biasing parameter , 1976 .

[21]  J. T. Webster,et al.  Regression analysis and problems of multicollinearity , 1975 .

[22]  Lawrence L. Kupper,et al.  A new approach to mean squared error estimation of response surfaces , 1973 .

[23]  E. Greenberg Minimum Variance Properties of Principal Component Regression , 1975 .

[24]  R. Snee,et al.  Ridge Regression in Practice , 1975 .