Probabilistic framework for multiaxial LCF assessment under material variability

Abstract The influence of material variability upon the multiaxial LCF assessment of engineering components is missing for a comprehensive description. In this paper, a probabilistic framework is established for multiaxial LCF assessment of notched components by using the Chaboche plasticity model and Fatemi-Socie criterion. Simulations from experimental results of two steels reveal that the scatter in fatigue lives can be well described by quantifying the variability of four material parameters { σ f ′ , e f ′ , b , c } . A procedure for choosing the safety factor for fatigue design has been derived by using first order approximation.

[1]  Dianyin Hu,et al.  Probabilistic design for turbine disk at high temperature , 2011 .

[2]  François Hild,et al.  A probabilistic model for multiaxial high cycle fatigue , 2007 .

[3]  A. Carpinteri,et al.  Structural integrity assessment of metallic components under multiaxial fatigue: the C–S criterion and its evolution , 2012 .

[4]  Boris Jeremić,et al.  On probabilistic yielding of materials , 2009 .

[5]  Hong-Zhong Huang,et al.  Bayesian framework for probabilistic low cycle fatigue life prediction and uncertainty modeling of aircraft turbine disk alloys , 2013 .

[6]  Sankaran Mahadevan,et al.  Inference of equivalent initial flaw size under multiple sources of uncertainty , 2011 .

[7]  Ali S. Hadi,et al.  On fitting a fatigue model to data , 1999 .

[8]  G. B. Broggiato,et al.  The Chaboche nonlinear kinematic hardening model: calibration methodology and validation , 2008 .

[9]  D. L. McDiarmid,et al.  A SHEAR STRESS BASED CRITICAL‐PLANE CRITERION OF MULTIAXIAL FATIGUE FAILURE FOR DESIGN AND LIFE PREDICTION , 1994 .

[10]  Stefano Beretta,et al.  A log-normal format for failure probability under LCF: Concept, validation and definition of design curve , 2016 .

[11]  Q. Gao,et al.  Random cyclic stress-strain responses of a stainless steel pipe-weld metal I — a statistical investigation , 2000 .

[12]  Yanyao Jiang,et al.  Modeling of fatigue crack growth from a notch , 2007 .

[13]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[14]  Jiang Fan,et al.  Probabilistic damage tolerance analysis on turbine disk through experimental data , 2012 .

[15]  Yongming Liu,et al.  Probabilistic fatigue life prediction using an equivalent initial flaw size distribution , 2009 .

[16]  Hong-Zhong Huang,et al.  Probabilistic modeling of damage accumulation for time-dependent fatigue reliability analysis of railway axle steels , 2015 .

[17]  Rami Mansour,et al.  Fatigue probability assessment including aleatory and epistemic uncertainty with application to gas turbine compressor blades , 2017 .

[18]  Jean-Louis Chaboche,et al.  A review of some plasticity and viscoplasticity constitutive theories , 2008 .

[19]  J. Chaboche,et al.  On the Plastic and Viscoplastic Constitutive Equations—Part I: Rules Developed With Internal Variable Concept , 1983 .

[20]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[21]  David L. McDowell,et al.  Simulation-based strategies for microstructure-sensitive fatigue modeling , 2007 .

[22]  G. Meneghetti,et al.  A Simple and Efficient Reformulation of the Classical Manson–Coffin Curve to Predict Lifetime Under Multiaxial Fatigue Loading—Part II: Notches , 2009 .

[23]  Simon R. Phillpot,et al.  Uncertainty Quantification in Multiscale Simulation of Materials: A Prospective , 2013 .

[24]  Marco Antonio Meggiolaro,et al.  Statistical evaluation of strain-life fatigue crack initiation predictions , 2004 .

[25]  Maurizio Guida,et al.  A Bayesian analysis of fatigue data , 2010 .

[26]  Nicole Apetre,et al.  Generalized probabilistic model allowing for various fatigue damage variables , 2017 .

[27]  Dianyin Hu,et al.  Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling , 2016 .

[28]  Paulo J. Tavares,et al.  Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model , 2016 .

[29]  O. K. Chopra,et al.  Review of the margins for ASME code fatigue design curve - effects of surface roughness and material variability. , 2003 .

[30]  Q. Gao,et al.  Random cyclic stress-strain responses of a stainless steel pipe-weld metal. II: a modeling , 2000 .

[31]  Jun g Sik Kong,et al.  Probabilistic fatigue integrity assessment in multiple crack growth analysis associated with equivalent initial flaw and material variability , 2016 .

[32]  José A.F.O. Correia,et al.  Fatigue assessment of a riveted shear splice based on a probabilistic model , 2010 .

[33]  Weiwen Peng,et al.  Mean stress effect correction in strain energy-based fatigue life prediction of metals , 2017 .

[34]  Michael M. Khonsari,et al.  Probabilistic simulation of fatigue damage and life scatter of metallic components , 2013 .

[35]  Shun-Peng Zhu,et al.  Mean Stress and Ratcheting Corrections in Fatigue Life Prediction of Metals , 2016 .

[36]  S. Imaoka Chaboche Nonlinear Kinematic Hardening Model , 2009 .

[37]  F. M. Burdekin,et al.  Engineering critical analyses to BS 7910 — the UK guide on methods for assessing the acceptability of flaws in metallic structures , 2000 .

[38]  A. Karolczuk,et al.  A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials , 2005 .

[39]  S. C. Wu,et al.  Cyclic plastic strain based damage tolerance for railway axles in China , 2016 .

[40]  Darrell F. Socie,et al.  Statistical Strain-Life Fatigue Analysis , 1996 .

[41]  F. Morel,et al.  Data scatter in multiaxial fatigue: from the infinite to the finite fatigue life regime , 2005 .

[42]  William J. O'Donnell Code Design and Evaluation for Cyclic Loading—Sections III and VIII , 2006 .

[43]  Michael P. Enright,et al.  A Microstructure-Based Time-Dependent Crack Growth Model for Life and Reliability Prediction of Turbopropulsion Systems , 2013, Metallurgical and Materials Transactions A.

[44]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[45]  Peter J. Laz,et al.  A probabilistic total fatigue life model incorporating material inhomogeneities, stress level and fracture mechanics , 2001 .

[46]  Sankaran Mahadevan,et al.  Uncertainty quantification and model validation of fatigue crack growth prediction , 2011 .

[47]  Yunhan Liu,et al.  A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades , 2017, Materials.

[48]  Huseyin Sehitoglu,et al.  An energy-based microstructure model to account for fatigue scatter in polycrystals , 2011 .

[49]  José A.F.O. Correia,et al.  A probabilistic approach for multiaxial fatigue criteria , 2016 .

[50]  V. T. Troshchenko,et al.  Strain–life curves of steels and methods for determining the curve parameters. Part 1. Conventional methods , 2010 .

[51]  Peter J. Laz,et al.  Probabilistic fatigue life prediction using AFGROW and accounting for material variability , 2010 .

[52]  Harry R. Millwater,et al.  Application of Probabilistic Fracture Mechanics to Prognosis of Aircraft Engine Components , 2006 .

[53]  José A.F.O. Correia,et al.  Statistical evaluation of fatigue strength of double shear riveted connections and crack growth rates of materials from old bridges , 2017 .

[54]  J. M. Larsen,et al.  Towards a physics-based description of fatigue variability behavior in probabilistic life-prediction , 2009 .

[55]  RC McClung,et al.  A Software Framework for Probabilistic Fatigue Life Assessment of Gas Turbine Engine Rotors , 2004 .

[56]  David L. McDowell,et al.  Failure of metals II: Fatigue , 2016 .

[57]  Franck Morel,et al.  A mechanistic approach to the Kitagawa–Takahashi diagram using a multiaxial probabilistic framework , 2013 .

[58]  Adam Niesłony,et al.  Fatigue life under non-Gaussian random loading from various models , 2004 .

[59]  Hong-Zhong Huang,et al.  A unified criterion for fatigue–creep life prediction of high temperature components , 2017 .

[60]  Yu C Tong,et al.  Literature Review on Aircraft Structural Risk and Reliability Analysis , 2001 .

[61]  K. Wallin Statistical aspects of fatigue life and endurance limit , 2010 .

[62]  Chanakya Arya,et al.  Eurocode 3: Design of steel structures , 2018, Design of Structural Elements.

[63]  M. Vormwald,et al.  Developments in the fatigue procedures of the FKM-guideline analytical strength assessment of components in mechanical engineering , 2009 .

[64]  Patrick J. Golden,et al.  Reducing Uncertainty in Fatigue Life Limits of Turbine Engine Alloys (Preprint) , 2012 .

[65]  Hong-Zhong Huang,et al.  Probabilistic Low Cycle Fatigue Life Prediction Using an Energy-Based Damage Parameter and Accounting for Model Uncertainty , 2012 .

[66]  Weiwen Peng,et al.  Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty , 2016, Reliab. Eng. Syst. Saf..

[67]  L. Pook Mechanical behavior of materials: Engineering methods for deformation, fracture, and fatigue , 1997 .

[68]  Sankaran Mahadevan,et al.  Multiaxial fatigue reliability analysis of railroad wheels , 2008, Reliab. Eng. Syst. Saf..