Material–tissue interfaces in implantable systems

Abstract: The reactions on the interface between a technical material and the target tissue determine the performance of an implanted system. This chapter introduces the fundamental mechanisms of the foreign body reaction from an engineering point of view, discusses material selection criteria and material properties for substrates, and provides an overview of isolation and encapsulation materials for implantable sensor and actuator systems. It presents some general design considerations on the sensor and actuator level and concludes with a short overview of methods to reduce the tissue reactions at the interface level.

[1]  Alfred Stett,et al.  Subretinal electronic chips allow blind patients to read letters and combine them to words , 2010, Proceedings of the Royal Society B: Biological Sciences.

[2]  W. Mokwa,et al.  Microsensor techniques for cardiovascular systems , 1997 .

[3]  F. Solzbacher,et al.  Characterization of a-SiC(x):H thin films as an encapsulation material for integrated silicon based neural interface devices. , 2007, Thin Solid Films.

[4]  T Stieglitz,et al.  Diffusion-Limited Deposition of Parylene C , 2011, Journal of Microelectromechanical Systems.

[5]  Jon A. Mukand,et al.  Neuronal ensemble control of prosthetic devices by a human with tetraplegia , 2006, Nature.

[6]  Thomas Stieglitz,et al.  Manufacturing, assembling and packaging of miniaturized neural implants , 2010 .

[7]  C. Israel,et al.  Current status of dual-sensor pacemaker systems for correction of chronotropic incompetence. , 2000, The American journal of cardiology.

[8]  Susan Warner,et al.  Diagnostics + therapy = theranostics , 2004 .

[9]  Joseph Zyss,et al.  Single-mode TE00-TM00 optical waveguides on SU-8 polymer , 2004 .

[10]  R. Langer,et al.  Engineering substrate topography at the micro- and nanoscale to control cell function. , 2009, Angewandte Chemie.

[11]  S. Pourmehdi,et al.  An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle , 1998, IEEE Transactions on Biomedical Engineering.

[12]  K. Horch,et al.  A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array , 1991, IEEE Transactions on Biomedical Engineering.

[13]  Christina Hassler,et al.  Chronic intracortical implantation of saccharose-coated flexible shaft electrodes into the cortex of rats , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[14]  C. Richter Cochlear Implants: Fundamentals and Applications , 2004 .

[15]  Thomas Stieglitz,et al.  Neural Implants in Clinical Practice , 2006 .

[16]  Daryl R. Kipke,et al.  Wireless implantable microsystems: high-density electronic interfaces to the nervous system , 2004, Proceedings of the IEEE.

[17]  G. Brindley The first 500 sacral anterior root stimulators: implant failures and their repair , 1995, Paraplegia.

[18]  Daryl R. Kipke,et al.  Fabrication of Polymer Neural Probes with Sub-cellular Features for Reduced Tissue Encapsulation , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[19]  Thomas Stieglitz,et al.  In vitro evaluation of the long-term stability of polyimide as a material for neural implants. , 2010, Biomaterials.

[20]  Richard L. Lindstrom,et al.  Soft intraocular lenses , 1987, Transactions of the New Orleans Academy of Ophthalmology.

[21]  Suzanne S. Stensaas,et al.  Histopathological evaluation of materials implanted in the cerebral cortex , 1978, Acta Neuropathologica.

[22]  K. Wise,et al.  Silicon ribbon cables for chronically implantable microelectrode arrays , 1994, IEEE Transactions on Biomedical Engineering.

[23]  Martin Stelzle,et al.  Biostability of micro-photodiode arrays for subretinal implantation. , 2002, Biomaterials.

[24]  P. Donaldson,et al.  Twenty years of neurological prosthesis-making. , 1987, Journal of biomedical engineering.

[25]  G. Kotzar,et al.  Evaluation of MEMS materials of construction for implantable medical devices. , 2002, Biomaterials.

[26]  Wei He,et al.  Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays , 2006, Journal of neural engineering.

[27]  Chung-Chiun Liu,et al.  Flexible Nerve Stimulation Electrode With Iridium Oxide Sputtered on Liquid Crystal Polymer , 2009, IEEE Transactions on Biomedical Engineering.

[28]  P. Renaud,et al.  Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. , 2004, Lab on a chip.

[29]  David Daomin Zhou,et al.  Implantable Neural Prostheses 2 , 2010 .

[30]  G. W. Hastings,et al.  Book reviewDefinitions in Biomaterials: Progress in Biomedical Engineering 4, Editor: D.F. Williams. Elsevier, Amsterdam, 1987, pp viii + 72, US $63.50 , 1989 .

[31]  Thomas Stieglitz,et al.  Morphologic and functional evaluation of peripheral nerve fibers regenerated through polyimide sieve electrodes over long-term implantation. , 2002, Journal of biomedical materials research.

[32]  Thomas Stieglitz,et al.  Development of a micromachined epiretinal vision prosthesis , 2009, Journal of neural engineering.

[33]  L. Cauller,et al.  Biocompatible SU-8-Based Microprobes for Recording Neural Spike Signals From Regenerated Peripheral Nerve Fibers , 2008, IEEE Sensors Journal.

[34]  HARRY G. MONO,et al.  The Electrode‐Tissue Interface: The Revolutionary Role of Steroid Elution , 1992, Pacing and clinical electrophysiology : PACE.

[35]  F. Solzbacher,et al.  Integrated wireless neural interface based on the Utah electrode array , 2009, Biomedical microdevices.

[36]  G. Gabriel,et al.  SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues. , 2009, Biosensors & bioelectronics.

[37]  T. Stieglitz,et al.  Polymers for neural implants , 2011 .

[38]  James M. Anderson,et al.  Polyurethane Elastomer Biostability , 1995, Journal of biomaterials applications.

[39]  D. Tyler,et al.  Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis , 2008, Science.

[40]  J. Jankovic,et al.  Diagnosis and treatment of complications related to deep brain stimulation hardware , 2011, Movement disorders : official journal of the Movement Disorder Society.

[41]  E K Purcell,et al.  In vivo evaluation of a neural stem cell-seeded prosthesis , 2009, Journal of neural engineering.

[42]  G. E. Loeb,et al.  Cuff electrodes for chronic stimulation and recording of peripheral nerve activity , 1996, Journal of Neuroscience Methods.

[43]  A S G Curtis,et al.  Polymer-demixed nanotopography: control of fibroblast spreading and proliferation. , 2002, Tissue engineering.

[44]  Khalil Najafi,et al.  Flexible miniature ribbon cables for long-term connection to implantable sensors , 1990 .

[45]  Mahdi Rasouli,et al.  Energy sources and their development for application in medical devices , 2010, Expert review of medical devices.

[46]  Benjamin Geiger,et al.  Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. , 2007, Biophysical journal.

[47]  N. Lago,et al.  Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. , 2005, Biomaterials.

[48]  Florian Solzbacher,et al.  Encapsulation of an Integrated Neural Interface Device With Parylene C , 2009, IEEE Transactions on Biomedical Engineering.

[49]  David Hill,et al.  Design Engineering of Biomaterials for Medical Devices , 1998 .

[50]  Y. Zhou,et al.  Microjoining and Nanojoining , 2008 .

[51]  Silvestro Micera,et al.  A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems , 2005, Journal of the peripheral nervous system : JPNS.

[52]  Thomas Stieglitz Neuro-technical interfaces to the central nervous system , 2006, Poiesis Prax..

[53]  R. Normann,et al.  Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex , 1998, Journal of Neuroscience Methods.

[54]  John D. Enderle,et al.  Introduction to Biomedical Engineering , 1999 .

[55]  M. Vogt,et al.  Plasma-deposited passivation layers for moisture and water protection , 1995 .

[56]  K.P. Koch,et al.  Implantable biomedical microsystems for neural prostheses , 2005, IEEE Engineering in Medicine and Biology Magazine.

[57]  T. Kudo,et al.  The biological effects of antiadhesion agents on activated RAW264.7 macrophages. , 2002, Journal of biomedical materials research.

[58]  W. F. Gorham A New, General Synthetic Method for the Preparation of Linear Poly‐p‐xylylenes , 1966 .

[59]  Christina Hassler,et al.  Deposition Parameters Determining Insulation Resistance and Crystallinity of Parylene C in Neural Implant Encapsulation , 2009 .

[60]  Thomas Stieglitz,et al.  A blister-test apparatus for studies on the adhesion of materials used for neural electrodes , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[61]  Daryl R. Kipke,et al.  Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. , 2010, Small.

[62]  W. Reichert,et al.  Polyimides as biomaterials: preliminary biocompatibility testing. , 1993, Biomaterials.

[63]  Rolando Barbucci,et al.  Biological Performance of Materials , 2000 .

[64]  Gerald E Loeb,et al.  Mechanical loading of rigid intramuscular implants , 2007, Biomedical microdevices.

[65]  Stanislav Herwik,et al.  Brain-computer interfaces: an overview of the hardware to record neural signals from the cortex. , 2009, Progress in brain research.

[66]  J. Rühe,et al.  Surface-attached PDMAA-GRGDSP hybrid polymer monolayers that promote the adhesion of living cells. , 2008, Biomacromolecules.

[67]  Qingsong Yu,et al.  Interfacial factors in corrosion protection: an EIS study of model systems , 2001 .

[68]  G. Rizzolatti,et al.  Seven Years of Recording from Monkey Cortex with a Chronically Implanted Multiple Microelectrode , 2010, Front. Neuroeng..

[69]  David F. Williams On the mechanisms of biocompatibility. , 2008, Biomaterials.

[70]  Joon B. Park Biomaterials:An Introduction , 1992 .

[71]  Jonathan Black,et al.  Handbook of Biomaterial Properties , 1998, Springer US.

[72]  Greg Miller,et al.  Shining New Light on Neural Circuits , 2006, Science.