Linking Traits to Energetics and Population Dynamics to Predict Lizard Ranges in Changing Environments

I present a dynamic bioenergetic model that couples individual energetics and population dynamics to predict current lizard ranges and those following climate warming. The model predictions are uniquely based on first principles of morphology, life history, and thermal physiology. I apply the model to five populations of a widespread North American lizard, Sceloporus undulatus, to examine how geographic variation in traits and life histories influences ranges. This geographic variation reflects the potential for species to adapt to environmental change. I then consider the range dynamics of the closely related Sceloporus graciosus. Comparing predicted ranges and actual current ranges reveals how dispersal limitations, species interactions, and habitat requirements influence the occupied portions of thermally suitable ranges. The dynamic model predicts individualistic responses to a uniform 3°C warming but a northward shift in the northern range boundary for all populations and species. In contrast to standard correlative climate envelope models, the extent of the predicted northward shift depends on organism traits and life histories. The results highlight the limitations of correlative models and the need for more dynamic models of species’ ranges.

[1]  D. Hodáňová An introduction to environmental biophysics , 1979, Biologia Plantarum.

[2]  W. Jetz,et al.  Thermal and energetic constraints on ectotherm abundance: a global test using lizards. , 2008, Ecology.

[3]  Thomas P. Minka,et al.  Gates , 2008, NIPS.

[4]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[5]  W. Porter,et al.  Po'ouli landscape bioinformatics models predict energetics, behavior, diets, and distribution on Maui. , 2006, Integrative and comparative biology.

[6]  M. Kearney,et al.  Habitat, environment and niche: what are we modelling? , 2006 .

[7]  T. Dawson,et al.  Model‐based uncertainty in species range prediction , 2006 .

[8]  Greg Dwyer,et al.  Combining Population‐Dynamic and Ecophysiological Models to Predict Climate‐Induced Insect Range Shifts , 2006, The American Naturalist.

[9]  Jonathan Roughgarden,et al.  Climate, competition, and the coexistence of island lizards , 2006 .

[10]  M. Massot,et al.  Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara , 2006 .

[11]  J. Roughgarden,et al.  Effect of species interactions on landscape abundance patterns , 2005 .

[12]  K. Nagy Field metabolic rate and body size , 2005, Journal of Experimental Biology.

[13]  J. Kingsolver,et al.  Biophysics, physiological ecology, and climate change: does mechanism matter? , 2005, Annual review of physiology.

[14]  M. McPeek,et al.  The community context of species' borders: ecological and evolutionary perspectives , 2005 .

[15]  R. Holt,et al.  Species' borders: A unifying theme in ecology , 2005 .

[16]  M. Sears Geographic variation in the life history of the sagebrush lizard: the role of thermal constraints on activity , 2005, Oecologia.

[17]  M. Angilletta,et al.  Temperature, Growth Rate, and Body Size in Ectotherms: Fitting Pieces of a Life-History Puzzle1 , 2004, Integrative and comparative biology.

[18]  M. Angilletta,et al.  Body Size Clines in Sceloporus Lizards: Proximate Mechanisms and Demographic Constraints1 , 2004, Integrative and comparative biology.

[19]  Venkat Lakshmi,et al.  Analysis of process controls in land surface hydrological cycle over the continental United States , 2004 .

[20]  M. Kearney,et al.  MAPPING THE FUNDAMENTAL NICHE: PHYSIOLOGY, CLIMATE, AND THE DISTRIBUTION OF A NOCTURNAL LIZARD , 2004 .

[21]  A. Dunham,et al.  Bergmann’s Clines in Ectotherms: Illustrating a Life‐History Perspective with Sceloporine Lizards , 2004, The American Naturalist.

[22]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[23]  A. Leaché,et al.  PHYLOGENETIC COMPARATIVE ANALYSIS OF LIFE‐HISTORY VARIATION AMONG POPULATIONS OF THE LIZARD SCELOPORUS UNDULATUS:AN EXAMPLE AND PROGNOSIS , 2004, Evolution; international journal of organic evolution.

[24]  A. Dunham,et al.  Variation in home range size along an elevational gradient in the iguanid lizard Sceloporus merriami , 1987, Oecologia.

[25]  Shawn R. Crowley Thermal sensitivity of sprint-running in the lizard Sceloporus undulatus: support for a conservative view of thermal physiology , 1985, Oecologia.

[26]  S. Waldschmidt The effect of supplemental feeding on home range size and activity patterns in the lizard Uta stansburiana , 1983, Oecologia.

[27]  J. Roughgarden,et al.  Resource partitioning of space and its relationship to body temperature in Anolis lizard populations , 1981, Oecologia.

[28]  R. Barbault,et al.  Ecological organization of a Chihuahuan desert lizard community , 2004, Oecologia.

[29]  G. Visser,et al.  The physiology-life history nexus in larks along an aridity gradient , 2003 .

[30]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[31]  T. Dawson,et al.  Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? , 2003 .

[32]  Raymond B Huey,et al.  Behavioral Drive versus Behavioral Inertia in Evolution: A Null Model Approach , 2003, The American Naturalist.

[33]  S. Schneider,et al.  Fingerprints of global warming on wild animals and plants , 2003, Nature.

[34]  C. Harley,et al.  Climate Change and Latitudinal Patterns of Intertidal Thermal Stress , 2002, Science.

[35]  O. Reichman,et al.  Physiology on a Landscape Scale: Plant-Animal Interactions1 , 2002, Integrative and comparative biology.

[36]  Michael J. Angilletta,et al.  Is physiological performance optimized by thermoregulatory behavior?: a case study of the eastern fence lizard, Sceloporus undulatus , 2002 .

[37]  M. Hulme,et al.  A high-resolution data set of surface climate over global land areas , 2002 .

[38]  A. Leaché,et al.  Molecular systematics of the Eastern Fence Lizard (Sceloporus undulatus): a comparison of Parsimony, Likelihood, and Bayesian approaches. , 2002, Systematic biology.

[39]  M. Angilletta Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus) , 2001 .

[40]  Julie R. Etterson,et al.  Constraint to Adaptive Evolution in Response to Global Warming , 2001, Science.

[41]  S. Manel,et al.  Evaluating presence-absence models in ecology: the need to account for prevalence , 2001 .

[42]  J Norberg,et al.  Phenotypic diversity and ecosystem functioning in changing environments: A theoretical framework , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. Peterson,et al.  Predicting Species Invasions Using Ecological Niche Modeling: New Approaches from Bioinformatics Attack a Pressing Problem , 2001 .

[44]  Bieke Vanhooydonck,et al.  Origins of interspecific variation in lizard sprint capacity , 2001 .

[45]  M. Angilletta Variation in metabolic rate between populations of a geographically widespread lizard. , 2001, Physiological and biochemical zoology : PBZ.

[46]  W. E. Stewart,et al.  Calculating Climate Effects on Birds and Mammals: Impacts on Biodiversity, Conservation, Population Parameters, and Global Community Structure1 , 2000 .

[47]  W. E. Stewart,et al.  Physiology on a landscape scale Applications in ecological theory and conservation practice , 2000 .

[48]  H. Pulliam On the relationship between niche and distribution , 2000 .

[49]  R. B. Jackson,et al.  Global biodiversity scenarios for the year 2100. , 2000, Science.

[50]  C. Parmesan,et al.  Poleward shifts in geographical ranges of butterfly species associated with regional warming , 1999, Nature.

[51]  John H. Campbell,et al.  Biological response to climate change on a tropical mountain , 1999, Nature.

[52]  R. Andrews,et al.  Geographic variation in field body temperature of sceloporus lizards , 1998 .

[53]  J. Losos,et al.  A COMPARATIVE ANALYSIS OF THE ECOLOGICAL SIGNIFICANCE OF MAXIMAL LOCOMOTOR PERFORMANCE IN CARIBBEAN ANOLIS LIZARDS , 1998, Evolution; international journal of organic evolution.

[54]  Peter Kareiva,et al.  Spatial ecology : the role of space in population dynamics and interspecific interactions , 1998 .

[55]  S. Adolph,et al.  Growth, seasonality, and lizard life histories: age and size at maturity , 1996 .

[56]  H. Gregory McDonald,et al.  Spatial Response of Mammals to Late Quaternary Environmental Fluctuations , 1996, Science.

[57]  Hsin-I Wu,et al.  A model comparison for daylength as a function of latitude and day of year , 1995 .

[58]  T. Reeder,et al.  Phylogenetic relationships among phrynosomatid lizards as inferred from mitochondrial ribosomal DNA sequences: substitutional bias and information content of transitions relative to transversions. , 1995, Molecular phylogenetics and evolution.

[59]  B. Sinervo,et al.  Growth Plasticity and Thermal Opportunity in Sceloporus Lizards , 1994 .

[60]  P. Niewiarowski Chapter 2. Understanding Geographic Life-History Variation in Lizards , 1994 .

[61]  L. Vitt,et al.  Lizard Ecology : Historical and Experimental Perspectives , 2014 .

[62]  A. Dunham,et al.  Life History and Demographic Variation in the Lizard Sceloporus Graciosus: A Long-Term Study , 1993 .

[63]  Peter H. Niewiarowski,et al.  Reciprocal Transplant Reveals Sources of Variation in Growth Rates of the Lizard Sceloporus Undulatus , 1993 .

[64]  S. Adolph,et al.  Temperature, Activity, and Lizard Life Histories , 1993, The American Naturalist.

[65]  W. Porter,et al.  Modeling global macroclimatic constraints on ectotherm energy budgets , 1992 .

[66]  B. Wilson Latitudinal Variation in Activity Season Mortality Rates of the Lizard Uta Stansburiana , 1991 .

[67]  S. Adolph Influence of Behavioral Thermoregulation on Microhabitat Use by Two Sceloporus Lizards , 1990 .

[68]  Terry L. Root,et al.  ENERGY CONSTRAINTS ON AVIAN DISTRIBUTIONS AND ABUNDANCES , 1988 .

[69]  W. Porter,et al.  Physiological and environmental sources of variation in reproduction: prairie lizards in a food rich environment , 1987 .

[70]  W. Porter,et al.  The Effect of Body Temperature and Feeding Regime on Activity, Passage Time, and Digestive Coefficient in the Lizard Uta stansburiana , 1986, Physiological Zoology.

[71]  W. Santee,et al.  Operative and Standard Operative Temperature: Tools for Thermal Energetics Studies , 1985 .

[72]  S. Pacala,et al.  Neighborhood Models of Plant Population Dynamics. I. Single-Species Models of Annuals , 1985, The American Naturalist.

[73]  E. Matthews,et al.  Atlas of Archived Vegetation, Land-use and Seasonal Albedo Data Sets , 1985 .

[74]  A. Muth Physiological Ecology of Desert Iguana (Dipsosaurus Dorsalis) Eggs: Temperature and Water Relations , 1980 .

[75]  G. Ferguson,et al.  Geographic Differences of Growth Rate of Sceloporus Lizards (Sauria: Iguanidae) , 1980 .

[76]  T. Schoener Length-Weight Regressions in Tropical and Temperate Forest-Understory Insects , 1980 .

[77]  F. H. Pough The Advantages of Ectothermy for Tetrapods , 1980, The American Naturalist.

[78]  W. Porter,et al.  Behavioral Implications of Mechanistic Ecology II: the African Rainbow Lizard, Agama agama , 1979 .

[79]  A. Dunham Food Availability as a Proximate Factor Influencing Individual Growth Rates in the Iguanid Lizard Sceloporus Merriami , 1978 .

[80]  R. Ballinger,et al.  Reproductive Strategies: Food Availability as a Source of Proximal Variation in a Lizard , 1977 .

[81]  R. Andrews,et al.  Energy utilization of a tropical lizard , 1977 .

[82]  A. Muth Thermoregulatory postures and orientation to the Sun: a mechanistic evaluation for the zebra-tailed lizard, Callisaurus draconoides , 1977 .

[83]  J. Mitchell,et al.  Heat transfer from spheres and other animal forms. , 1976, Biophysical journal.

[84]  W. K. Derickson Ecology and Physiological Aspects of Reproductive Strategies in Two Lizards , 1976 .

[85]  B. Rose Habitat and Prey Selection of Sceloporus Occidentalis and Sceloporus Graciosus , 1976 .

[86]  J. T. Collins,et al.  A Field Guide to Reptiles and Amphibians: Eastern and Central North America , 1975 .

[87]  M. B. Vinegar Life History Phenomena in Two Populations of the Lizard Sceloporus undulatus in Southwestern New Mexico , 1975 .

[88]  D. Tinkle,et al.  Lizard reproductive effort: caloric estimates and comments on its evolution , 1975 .

[89]  W. E. Reifsnyder Productivity of Forest Ecosystems , 1972 .

[90]  D. Tinkle,et al.  Sceloporus Undulatus: A Study of the Intraspecific Comparative Demography of a Lizard , 1972 .

[91]  H. G. Baker,et al.  Evolution in the Tropics , 1970 .

[92]  Carl Gans,et al.  Biology of the Reptilia , 1969 .

[93]  William W. Milstead Lizard Ecology a Symposium , 1967 .

[94]  D. M. Gates,et al.  The Energy Budget of a Lizard on a Tree Trunk , 1967 .

[95]  K. S. Norris Color adaptation in desert reptiles and its thermal relationships , 1967 .

[96]  Robert C. Stebbins,et al.  A field guide to western reptiles and amphibians : field marks of all species in western North America , 1998 .

[97]  W. Swinbank Long‐wave radiation from clear skies , 1963 .

[98]  Benjamin Y. H. Liu,et al.  The interrelationship and characteristic distribution of direct, diffuse and total solar radiation , 1960 .

[99]  Roger Conant,et al.  A Field Guide to Reptiles and Amphibians , 1959 .