From Analogical Proportion to Logical Proportions

Given a 4-tuple of Boolean variables (a, b, c, d), logical proportions are modeled by a pair of equivalences relating similarity indicators ($${a \wedge b}$$a∧b and $${\overline{a} \wedge \overline{b}}$$a¯∧b¯), or dissimilarity indicators ($${a \wedge \overline{b}}$$a∧b¯ and $${\overline{a} \wedge b}$$a¯∧b) pertaining to the pair (a, b), to the ones associated with the pair (c, d). There are 120 semantically distinct logical proportions. One of them models the analogical proportion which corresponds to a statement of the form “a is to b as c is to d”. The paper inventories the whole set of logical proportions by dividing it into five subfamilies according to what they express, and then identifies the proportions that satisfy noticeable properties such as full identity (the pair of equivalences defining the proportion hold as true for the 4-tuple (a, a, a, a)), symmetry (if the proportion holds for (a, b, c, d), it also holds for (c, d, a, b)), or code independency (if the proportion holds for (a, b, c, d), it also holds for their negations $${{(\overline{a},\overline{b}, \overline{c}, \overline{d})}}$$(a¯,b¯,c¯,d¯)). It appears that only four proportions (including analogical proportion) are homogeneous in the sense that they use only one type of indicator (either similarity or dissimilarity) in their definition. Due to their specific patterns, they have a particular cognitive appeal, and as such are studied in greater details. Finally, the paper provides a discussion of the other existing works on analogical proportions.

[1]  S. Klein Culture, Mysticism & Social Structure and the Calculation of Behavior , 1982, ECAI.

[2]  Peter D. Turney A Uniform Approach to Analogies, Synonyms, Antonyms, and Associations , 2008, COLING.

[3]  Duncan Cp,et al.  Reminiscence and forgetting in motor learning after extended rest intervals. , 1956 .

[4]  Robert Blanché,et al.  Structures Intellectuelles : essai sur l'organisation systématique des concepts , 1981 .

[5]  D. E. Smith,et al.  History of Mathematics , 1924, Nature.

[6]  Mary B. Hesse V — On Defining Analogy , 1960 .

[7]  Gilles Richard,et al.  A Kolmogorov Complexity View of Analogy: From Logical Modeling to Experimentations , 2010, SGAI Conf..

[8]  Bipin Indurkhya,et al.  Analogical projection in pattern perception , 2003, J. Exp. Theor. Artif. Intell..

[9]  Gilles Richard,et al.  Analogy, Paralogy and Reverse Analogy: Postulates and Inferences , 2009, KI.

[10]  Alex Lascarides,et al.  Computational Intelligence for Knowledge-Based Systems Design , 2010 .

[11]  Pierre Zweigenbaum,et al.  Analogical Translation of Medical Words in Different Languages , 2008, GoTAL.

[12]  Yves Lepage,et al.  A Measure of the Number of True Analogies between Chunks in Japanese , 2009, LTC.

[13]  Henri Prade,et al.  Handling Analogical Proportions in Classical Logic and Fuzzy Logics Settings , 2009, ECSQARU.

[14]  Paul Thagard,et al.  Analogical Mapping by Constraint Satisfaction , 1989, Cogn. Sci..

[15]  Florian Cajori William Oughtred: A Great Seventeenth-Century Teacher of Mathematics , 2009 .

[16]  Melanie Mitchell,et al.  The Copycat project: a model of mental fluidity and analogy-making , 1995 .

[17]  Gilles Richard,et al.  Multiple-Valued Logic Interpretations of Analogical, Reverse Analogical, and Paralogical Proportions , 2010, 2010 40th IEEE International Symposium on Multiple-Valued Logic.

[18]  Dedre Gentner,et al.  Structure-Mapping: A Theoretical Framework for Analogy , 1983, Cogn. Sci..

[19]  Gilles Richard,et al.  Enforcing regularity by means of analogy-related proportions – A new approach to classification , 2011 .

[20]  Gilles Richard,et al.  Logical Proportions - Further Investigations , 2012, IPMU.

[21]  Thomas G. Evans,et al.  A heuristic program to solve geometric-analogy problems , 1964, AFIPS '64 (Spring).

[22]  Miltos Petridis,et al.  Research and Development in Intelligent Systems XXVI, Incorporating Applications and Innovations in Intelligent Systems XVII, Peterhouse College, Cambridge, UK, 15-17 December 2009 , 2010, SGAI Conferences.

[23]  Béziau Jean-Yves New light on the Square of oppositions and its nameless corner , 2003 .

[24]  Brian Falkenhainer,et al.  The Structure-Mapping Engine: Algorithm and Examples , 1989, Artif. Intell..

[25]  W Leinfellner,et al.  [Logic and psychology]. , 1966, Studium generale; Zeitschrift fur die Einheit der Wissenschaften im Zusammenhang ihrer Begriffsbildungen und Forschungsmethoden.

[26]  Gilles Richard,et al.  When intelligence is just a matter of copying , 2012, ECAI.

[27]  Gilles Richard,et al.  Reasoning with Logical Proportions , 2010, KR.

[28]  Mark T. Keane,et al.  Seeing things: Inventive reasoning with geometric analogies and topographic maps , 2006, New Generation Computing.

[29]  D. Dubois,et al.  Conditional Objects as Nonmonotonic Consequence Relationships , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[30]  Patrick Henry Winston,et al.  Learning and reasoning by analogy , 1980, CACM.

[31]  Laurent Miclet,et al.  Relation d'analogie et distance sur un alphabet défini par des traits , 2004 .

[32]  D. Gentner,et al.  The analogical mind : perspectives from cognitive science , 2001 .

[33]  Jean-Yves Béziau,et al.  The Power of the Hexagon , 2012, Logica Universalis.

[34]  Gilles Richard,et al.  Picking the one that does not fit - A matter of logical proportions , 2013, EUSFLAT Conf..

[35]  Robert Blanche Sur l'opposition des concepts , 2008 .

[36]  Robert W. Schmidt Traité de logique: Essai de logistique opératoire , 1950 .

[37]  Stuart J. Russell,et al.  A Logical Approach to Reasoning by Analogy , 1987, IJCAI.

[38]  Yves Lepage,et al.  Analogy and Formal Languages , 2004, FGMOL.

[39]  Kenneth D. Forbus,et al.  A Structure-Mapping Model of Raven's Progressive Matrices , 2010 .

[40]  Yves Lepage,et al.  Saussurian analogy: a theoretical account and its application , 1996, COLING.

[41]  John Finnis ANALOGICAL REASONING IN LAW , 2011 .

[42]  Laurent Miclet,et al.  Analogical Dissimilarity: Definition, Algorithms and Two Experiments in Machine Learning , 2008, J. Artif. Intell. Res..

[43]  François Yvon,et al.  Analogical Learning and Formal Proportions : Definitions and Methodological Issues Apprentissage par analogie et proportions formelles : définitions et aspects méthodologiques , 2005 .

[44]  François Yvon,et al.  Du quatrième de proportion comme principe inductif : une proposition et son application à l’apprentissage de la morphologie [Inference with formal analogical proportions: application to the automatic learning of morphology] , 2006, TAL.

[45]  Yves Lepage,et al.  De l'analogie rendant compte de la commutation en linguistique , 2003 .

[46]  N. Chater The Search for Simplicity: A Fundamental Cognitive Principle? , 1999 .

[47]  Danushka Bollegala,et al.  Improving relational similarity measurement using symmetries in proportional word analogies , 2013, Inf. Process. Manag..

[48]  Stevan Harnad,et al.  Analogy and Mysticism and the Structure of Culture [and Comments and Reply] , 1983, Current Anthropology.

[49]  Kai-Uwe Kühnberger,et al.  Metaphors and heuristic-driven theory projection (HDTP) , 2006, Theor. Comput. Sci..

[50]  Tomohiro Takagi,et al.  Recommendation system with multi-dimensional and parallel-case four-term analogy , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[51]  Michael L. Littman,et al.  Corpus-based Learning of Analogies and Semantic Relations , 2005, Machine Learning.

[52]  Laurent Miclet,et al.  Learning by Analogy: A Classification Rule for Binary and Nominal Data , 2007, IJCAI.

[53]  G. Standart The theory of analogy , 1959 .

[54]  François Lorrain Réseaux sociaux et classifications sociales : essai sur l'algèbre et la géométrie des structures sociales , 1976 .

[55]  Rob Kling,et al.  A Paradigm for Reasoning by Analogy , 1971, IJCAI.

[56]  Gilles Richard,et al.  Homogeneous Logical Proportions: Their Uniqueness and Their Role in Similarity-Based Prediction , 2012, KR.

[57]  Maithilee Kunda,et al.  A computational model for solving problems from the Raven’s Progressive Matrices intelligence test using iconic visual representations , 2013, Cognitive Systems Research.

[58]  R. French The computational modeling of analogy-making , 2002, Trends in Cognitive Sciences.

[59]  François Yvon,et al.  An Analogical Learner for Morphological Analysis , 2005, CoNLL.

[60]  Gordon Plotkin,et al.  A Note on Inductive Generalization , 2008 .

[61]  David H. Helman,et al.  Analogical Reasoning: Perspectives of Artificial Intelligence, Cognitive Science, and Philosophy , 2009 .

[62]  A. Tversky Features of Similarity , 1977 .

[63]  Gilles Richard,et al.  Analogical Proportions and Multiple-Valued Logics , 2013, ECSQARU.

[64]  Kai-Uwe Kühnberger,et al.  A computational account of conceptual blending in basic mathematics , 2011, Cognitive Systems Research.

[65]  Jean Piaget,et al.  Essai sur les transformations des opérations logiques : les 256 opérations ternaires de la logique bivalente des propositions , 1952 .

[66]  Gilles Richard,et al.  Logical Proportions - Typology and Roadmap , 2010, IPMU.

[67]  Claude Chabrol,et al.  Structures intellectuelles , 1967 .

[68]  Tony Veale,et al.  The Competence of Sub-Optimal Theories of STructure Mapping on Hard Analogies , 1997, IJCAI.

[69]  Sheldon Klein The analogical foundations of creativity in language, culture & the arts , 2002 .

[70]  Didier Dubois,et al.  From Blanché’s Hexagonal Organization of Concepts to Formal Concept Analysis and Possibility Theory , 2012, Logica Universalis.

[71]  Maurice Dorolle La raisonnement par analogie , 1949 .

[72]  Gilles Richard,et al.  Analogical proportions: another logical view , 2009, SGAI Conf..

[73]  K. Holyoak,et al.  Analogical problem solving , 1980, Cognitive Psychology.

[74]  Alessio Moretti,et al.  Why the Logical Hexagon? , 2012, Logica Universalis.