Feature Selection used for Wind Speed Forecasting with Data Driven Approaches

Windspeedforecastingisimportantforwindpowergenerationandintegration.�Inthispaper,�NonlinearAutoregressive� modelprocesswitheXogenousinput�(NARX)�isproposedforwindspeedforecast.�Themainaimofthisexperimentisto� forecastwindspeedwithmeteorologicaltimeseriesdataasinputvariableusingNARXmodel.� Priortoforecasting,� ReliefFfeatureselectionisusedforidentificationofimportantfeaturesforwindspeedforecastandreducesthe� complexityofthemodel.� Performanceisevaluatedintermsofmeansquareerrorwhenusingthefeatureselection� methodwiththeNARXmodel.� ��Keywords: Wind speed, Feature selection, NARX, ReliefF

[1]  Yen-Ming Chiang,et al.  Comparison of static-feedforward and dynamic-feedback neural networks for rainfall -runoff modeling , 2004 .

[2]  Rafid Ahmed Khalil,et al.  Comparison of Four Neural Network Learning Methods Based on Genetic Algorithm for Non-linear Dynamic Systems Identification , 2012 .

[3]  Ah Chung Tsoi,et al.  STATIC AND DYNAMIC PREPROCESSING METHODS IN NEURAL NETWORKS , 1995 .

[4]  Chao Chen,et al.  A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks , 2012 .

[5]  Robert P. Broadwater,et al.  Current status and future advances for wind speed and power forecasting , 2014 .

[6]  Tae Yoon Kim,et al.  Artificial neural networks for non-stationary time series , 2004, Neurocomputing.

[7]  Sancho Salcedo-Sanz,et al.  Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization – Extreme learning machine approach , 2014 .

[8]  Jiamei Deng,et al.  Dynamic neural networks with hybrid structures for nonlinear system identification , 2013, Eng. Appl. Artif. Intell..

[9]  Qiang Shen,et al.  Computational Intelligence and Feature Selection - Rough and Fuzzy Approaches , 2008, IEEE Press series on computational intelligence.

[10]  Vladimiro Miranda,et al.  Wind power forecasting : state-of-the-art 2009. , 2009 .

[11]  Bandar Seri Iskandar,et al.  Heat Exchanger Performance Prediction Modeling using NARX-type Neural Networks , 2007 .

[12]  Hui Liu,et al.  Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction , 2012 .

[13]  Hang Xie,et al.  Time series prediction based on NARX neural networks: An advanced approach , 2009, 2009 International Conference on Machine Learning and Cybernetics.

[14]  Selwyn Piramuthu Evaluating feature selection methods for learning in data mining applications , 2004, Eur. J. Oper. Res..

[15]  Peter Tiño,et al.  Learning long-term dependencies in NARX recurrent neural networks , 1996, IEEE Trans. Neural Networks.

[16]  Meng Joo Er,et al.  NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches , 2005, Fuzzy Sets Syst..

[17]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[18]  K. Gnana Sheela,et al.  Neural network based hybrid computing model for wind speed prediction , 2013, Neurocomputing.

[19]  Amir F. Atiya,et al.  Prediction of MPEG-coded video source traffic using recurrent neural networks , 2003, IEEE Trans. Signal Process..

[20]  Richard J. Duro,et al.  Discrete-time backpropagation for training synaptic delay-based artificial neural networks , 1999, IEEE Trans. Neural Networks.

[21]  Eugen Diaconescu,et al.  The use of NARX neural networks to predict chaotic time series , 2008 .

[22]  Abbas Ali Abounoori,et al.  Comparative study of static and dynamic neural network models for nonlinear time series forecasting , 2012 .