Feedback Control of the chemotherapy of HIV

Using a model which describes the interaction of the immune system with the human immunodeficiency virus (HIV), we introduce a feedback control strategy of chemotherapy in an early treatment setting, where the control represents the percentage of effect chemotherapy has on the viral production. We seek to regulate the viral count by manipulating the percentage of effect chemotherapy has on the viral production. We show via numerical simulations that the proposed feedback control strategy can handle strong uncertainties in the HIV dynamics induced by imperfect modeling and sampled/delayed cell measurements.

[1]  Anne M Johnson,et al.  Comparison of long-term prognosis of patients with AIDS treated and not treated with zidovudine , 1994 .

[2]  Marios M. Polycarpou,et al.  Indirect adaptive nonlinear control of drug delivery systems , 1998, IEEE Trans. Autom. Control..

[3]  A S Perelson,et al.  Modeling HIV infection of CD4+ T-cell subpopulations. , 1994, Journal of theoretical biology.

[4]  H. Khalil,et al.  Output feedback stabilization of fully linearizable systems , 1992 .

[5]  A S Perelson,et al.  Mathematical analysis of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads. , 1998, Journal of theoretical biology.

[6]  Martin S. Hirsch,et al.  Use of evolutionary limitations of HIV-1 multidrug resistance to optimize therapy , 1993, Nature.

[7]  A. Perelson,et al.  A Model for the Immune System Response to HIV: AZT Treatment Studies , 1993 .

[8]  D. Kirschner,et al.  A model for treatment strategy in the chemotherapy of AIDS. , 1996, Bulletin of mathematical biology.

[9]  Denise E. Kirschner,et al.  Using Mathematics to Understand HIV Immune Dynamics , 1997 .

[10]  Ricardo Femat,et al.  Robust control of a class of uncertain first-order systems with least prior knowledge , 1998 .

[11]  T. O'Brien,et al.  Effects of disease stage and zidovudine therapy on the detection of human immunodeficiency virus type 1 in semen. , 1992, JAMA.

[12]  A. Perelson,et al.  Dynamics of HIV infection of CD4+ T cells. , 1993, Mathematical biosciences.

[13]  M A Nowak,et al.  Competition between zidovudine‐sensitive and zidovudine‐resistant strains of HIV , 1992, AIDS.

[14]  Alexander L. Fradkov Exploring nonlinearity by feedback , 1999 .

[15]  S. Hammer,et al.  Zidovudine: Five Years Later , 1992, Annals of Internal Medicine.

[16]  M. Nowak,et al.  Dynamic multidrug therapies for HIV: a control theoretic approach. , 2015, Journal of theoretical biology.

[17]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[18]  D. Kirschner,et al.  Optimal control of the chemotherapy of HIV , 1997, Journal of mathematical biology.

[19]  Alan S. Perelson,et al.  Mathematical Analysis of HIV-1 Dynamics in Vivo , 1999, SIAM Rev..