Max-Min Problems on the Ranks and Inertias of the Matrix Expressions A−BXC±(BXC)∗ with Applications

We introduce a simultaneous decomposition for a matrix triplet (A,B,C∗), where A=±A∗ and (⋅)∗ denotes the conjugate transpose of a matrix, and use the simultaneous decomposition to solve some conjectures on the maximal and minimal values of the ranks of the matrix expressions A−BXC±(BXC)∗ with respect to a variable matrix X. In addition, we give some explicit formulas for the maximal and minimal values of the inertia of the matrix expression A−BXC−(BXC)∗ with respect to X. As applications, we derive the extremal ranks and inertias of the matrix expression D−CXC∗ subject to Hermitian solutions of a consistent matrix equation AXA∗=B, as well as the extremal ranks and inertias of the Hermitian Schur complement D−B∗A∼B with respect to a Hermitian generalized inverse A∼ of A. Various consequences of these extremal ranks and inertias are also presented in the paper.

[1]  Yongge Tian Upper and lower bounds for ranks of matrix expressions using generalized inverses , 2002 .

[2]  Raphael Loewy,et al.  The inverse inertia problem for graphs: Cut vertices, trees, and a counterexample , 2009 .

[3]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[4]  S. K. Sen,et al.  Computing a matrix symmetrizer exactly using modified multiple modulus residue arithmetic , 1988 .

[5]  M. A. Kaashoek,et al.  Partially Specified Matrices and Operators: Classification, Completion, Applications , 1995 .

[6]  B. Cain,et al.  The inertia of a Hermitian matrix having prescribed complementary principal submatrices , 1981 .

[7]  Hugo J. Woerdeman,et al.  Minimal rank completions of partial banded matrices , 1993 .

[8]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[9]  Yongge Tian,et al.  The Minimum Rank of a 3 × 3 Partial Block Matrix , 2002 .

[10]  Yongge Tian,et al.  Rank Equalities for Block Matrices and Their Moore-Penrose Inverses , 2004 .

[11]  Yoshio Takane,et al.  The inverse of any two-by-two nonsingular partitioned matrix and three matrix inverse completion problems , 2009, Comput. Math. Appl..

[12]  Yongge Tian,et al.  Equalities and inequalities for inertias of hermitian matrices with applications , 2010 .

[13]  L. Mirsky,et al.  Introduction to Linear Algebra , 1965, The Mathematical Gazette.

[14]  Leiba Rodman,et al.  Ranks of Completions of Partial Matrices , 1989 .

[15]  Yongge Tian Extremal ranks of a quadratic matrix expression with applications , 2011 .

[16]  M. Saunders,et al.  Towards a Generalized Singular Value Decomposition , 1981 .

[17]  R. Kala,et al.  Symmetrizers of matrices , 1981 .

[18]  Yoshio Takane,et al.  Ranks of Hermitian and skew-Hermitian solutions to the matrix equation AXA∗=B , 2009 .

[19]  Yongge Tian,et al.  The Maximal and Minimal Ranks of Some Expressions of Generalized Inverses of Matrices , 2002 .

[20]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[21]  B. Cain,et al.  The inertia of a Hermitian matrix having prescribed diagonal blocks , 1981 .

[22]  C. Scherer A complete algebraic solvability test for the nonstrict Lyapunov inequality , 1995 .

[23]  Yongge Tian,et al.  More on maximal and minimal ranks of Schur complements with applications , 2004, Appl. Math. Comput..

[24]  Yongge Tian,et al.  A simultaneous decomposition of a matrix triplet with applications , 2011, Numer. Linear Algebra Appl..

[25]  Aurelian Gheondea One-step completions of hermitian partial matrices with minimal negative signature , 1992 .

[26]  Monique Laurent,et al.  Matrix Completion Problems , 2009, Encyclopedia of Optimization.

[27]  Katsutoshi Takahashi Invertible completions of operator matrices , 1995 .

[28]  B. Cain,et al.  The inertia of hermitian matrices with a prescribed 2×2 block decomposition , 1992 .

[29]  G. Styan,et al.  Rank equalities for idempotent matrices with applications , 2006 .

[30]  Yongge Tian,et al.  Extremal ranks of submatrices in an Hermitian solution to the matrix equation AXA*=B with applications , 2010 .

[31]  Hugo J. Woerdeman,et al.  Hermitian and normal completions , 1997 .

[32]  L. Hogben Handbook of Linear Algebra , 2006 .

[33]  Yongge Tian,et al.  Rank equalities for idempotent and involutary matrices , 2001 .

[34]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[35]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[36]  David R. Karger,et al.  The complexity of matrix completion , 2006, SODA '06.

[37]  E. Haynsworth Determination of the inertia of a partitioned Hermitian matrix , 1968 .

[38]  Meena Mahajan,et al.  On the Complexity of Matrix Rank and Rigidity , 2007, CSR.

[39]  Yongge Tian,et al.  RANK AND INERTIA OF SUBMATRICES OF THE MOORE-PENROSE INVERSE OF A HERMITIAN MATRIX ∗ , 2010 .

[40]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[41]  Yongge Tian,et al.  More on extremal ranks of the matrix expressions A − BX ± X*B* with statistical applications , 2008, Numer. Linear Algebra Appl..

[42]  A. Ostrowski,et al.  On the inertia of some classes of partitioned matrices , 1968 .

[43]  Hugo J. Woerdeman,et al.  Toeplitz minimal rank completions , 1994 .

[44]  Mikhail I. Ostrovskii,et al.  Quadratic Inequalities for Hilbert Space Operators , 2007 .

[45]  Nir Cohen,et al.  Inertias of Block Band Matrix Completions , 1998 .

[46]  J. Maddocks Restricted quadratic forms, inertia theorems, and the Schur complement , 1988 .

[47]  J. Geelen Maximum rank matrix completion , 1999 .

[48]  Jerome Dancis Poincaré's inequalities and Hermitian completions of certain partial matrices , 1992 .

[49]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[50]  Hugo J. Woerdeman,et al.  Minimal rank completions for block matrices , 1989 .

[51]  Robert E. Skelton,et al.  Assigning controllability and observability Gramians in feedback control , 1991 .

[52]  G. Styan,et al.  Equalities and Inequalities for Ranks of Matrices , 1974 .

[53]  Tiberiu Constantinescu,et al.  The negative signature of some hermitian matrices , 1993 .

[54]  Yongge Tian,et al.  COMPLETING BLOCK HERMITIAN MATRICES WITH MAXIMAL AND MINIMAL RANKS AND INERTIAS , 2010 .

[55]  Yongge Tian,et al.  Rank equalities related to outer inverses of matrices and applications , 2001 .

[56]  Yongge Tian Ranks of Solutions of the Matrix Equation AXB = C , 2003 .

[57]  Yongge Tian,et al.  Extremal Ranks of Some Symmetric Matrix Expressions with Applications , 2006, SIAM J. Matrix Anal. Appl..

[58]  Jerome Dancis,et al.  The possible inertias for a Hermitian matrix and its principal submatrices , 1987 .

[59]  Yongge Tian,et al.  The maximal and minimal ranks of A − BXC with applications , 2003 .

[60]  Yongge Tian Completing triangular block matrices with maximal and minimal ranks , 2000 .

[61]  Shinji Hara,et al.  State covariance assignment problem with measurement noise: a unified approach based on a symmetric matrix equation , 1994 .

[62]  C. M. da Fonseca,et al.  THE INERTIA OF CERTAIN HERMITIAN BLOCK MATRICES , 1998 .