Model-order selection: a review of information criterion rules

The parametric (or model-based) methods of signal processing often require not only the estimation of a vector of real-valued parameters but also the selection of one or several integer-valued parameters that are equally important for the specification of a data model. Examples of these integer-valued parameters of the model include the orders of an autoregressive moving average model, the number of sinusoidal components in a sinusoids-in-noise signal, and the number of source signals impinging on a sensor array. In each of these cases, the integer-valued parameters determine the dimension of the parameter vector of the data model, and they must be estimated from the data.

[1]  Torsten Söderström,et al.  Model-structure selection by cross-validation , 1986 .

[2]  Charles W. Therrien,et al.  Discrete Random Signals and Statistical Signal Processing , 1992 .

[3]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[4]  H. Akaike A new look at the statistical model identification , 1974 .

[5]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[6]  Hirotugu Akaike,et al.  On the Likelihood of a Time Series Model , 1978 .

[7]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[8]  J. Rissanen Estimation of structure by minimum description length , 1982 .

[9]  石黒 真木夫,et al.  Akaike information criterion statistics , 1986 .

[10]  Petre Stoica,et al.  Performance study of conditional and unconditional direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[11]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[12]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[13]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[14]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[15]  ByoungSeon Choi,et al.  Arma Model Identification , 1992 .

[16]  Piet M. T. Broersen,et al.  Finite sample criteria for autoregressive order selection , 2000, IEEE Trans. Signal Process..

[17]  E. Hannan,et al.  The statistical theory of linear systems , 1989 .

[18]  Piet M. T. Broersen,et al.  Automatic spectral analysis with time series models , 2002, IEEE Trans. Instrum. Meas..

[19]  R. Bhansali,et al.  Some properties of the order of an autoregressive model selected by a generalization of Akaike∘s EPF criterion , 1977 .

[20]  R. Kashyap Inconsistency of the AIC rule for estimating the order of autoregressive models , 1980 .

[21]  J. Cavanaugh Unifying the derivations for the Akaike and corrected Akaike information criteria , 1997 .

[22]  Piet M. T. Broersen,et al.  Order selection for vector autoregressive models , 2003, IEEE Trans. Signal Process..

[23]  Rangasami L. Kashyap,et al.  Optimal Choice of AR and MA Parts in Autoregressive Moving Average Models , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Clifford M. Hurvich,et al.  A CORRECTED AKAIKE INFORMATION CRITERION FOR VECTOR AUTOREGRESSIVE MODEL SELECTION , 1993 .

[25]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[26]  R.N. Bracewell,et al.  Signal analysis , 1978, Proceedings of the IEEE.

[27]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[28]  Bjorn Ottersten,et al.  Exact and Large Sample ML Techniques for Parameter Estimation and Detection in Array Processing , 1993 .

[29]  A. McQuarrie,et al.  Regression and Time Series Model Selection , 1998 .

[30]  David R. Anderson,et al.  Bayesian Methods in Cosmology: Model selection and multi-model inference , 2009 .

[31]  Petar M. Djuric,et al.  Asymptotic MAP criteria for model selection , 1998, IEEE Trans. Signal Process..

[32]  Jian Li,et al.  Multi-model approach to model selection , 2004, Digit. Signal Process..