A genetic search algorithm to optimize job sequencing under a technological constraint in a rolling-mill facility

This article presents some results from the application of a genetic search algorithm to solve a job scheduling problem where setup costs depend on the order of the jobs. An empirical study shows that, for small problems, the solutions given by the genetic algorithm are as good as those obtained with a mixed-integer linear program. For larger problems that are computationally infeasible, we benchmark the genetic solutions against traditional scheduling heuristics. We also study different population management strategies that can improve the performance of the algorithm. Finally, future research avenues are discussed.ZusammenfassungBetrachtet wird ein dynamisches Problem der Reihenfolgeplanung in einem Walzwerk. Ziel ist die Minimierung der Summe aus Lagerkosten für Halbfertigfabrikate und reihenfolgeabhängigen Rüstkosten. Zur Lösung wird ein genetischer Algorithmus benutzt. Zur Beurteilung der Leistungsfähigkeit des Verfahrens werden für kleinere Probleme exakte Lösungen herangezogen, für größere Probleme erfolgt ein Vergleich mit prioritätsregelbasierten Verfahren.

[1]  Jan Karel Lenstra,et al.  Job Shop Scheduling by Simulated Annealing , 1992, Oper. Res..

[2]  G. Syswerda,et al.  Schedule Optimization Using Genetic Algorithms , 1991 .

[3]  Robert L. Bulfin,et al.  Simulated annealing for resource-constrained scheduling , 1993 .

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  Kenneth R. Baker,et al.  AN EXPERIMENTAL STUDY OF THE EFFECTIVENESS OF ROLLING SCHEDULES IN PRODUCTION PLANNING , 1977 .

[6]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[7]  James H. Bookbinder,et al.  Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints , 1988 .

[8]  Benoit Montreuil,et al.  AN OBJECT-ORIENTED KNOWLEDGE REPRESENTATION FOR INTELLIGENT CONTROL OF MANUFACTURING WORKSTATIONS , 1994 .

[9]  Pierre Lefrançois,et al.  A service-level-oriented heuristic approach to production planning in a robotized spinning-mill , 1990 .

[10]  Fred Glover,et al.  Tabu search methods for a single machine scheduling problem , 1991, J. Intell. Manuf..

[11]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[12]  Fred Glover,et al.  Tabu Search: A Tutorial , 1990 .

[13]  Darrell Whitley,et al.  The Travelling Salesman and Sequence Scheduling: Quality Solutions using Genetic Edge Recombination , 1990 .

[14]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[15]  FEDERICO DELLA CROCE,et al.  A genetic algorithm for the job shop problem , 1995, Comput. Oper. Res..

[16]  Upendra Dave,et al.  Heuristic Scheduling Systems , 1993 .