A Comparative Study of Confining Ligands Derived from Methylated Cyclodextrins in Gold-Catalyzed Cycloisomerization of 1,6-Enynes

[1]  J. Djukic,et al.  Benzimidazolium- and Benzimidazolilydene-Capped Cyclodextrins: New Perspectives in Anion Encapsulation and Gold-Catalyzed Cycloisomerization of 1,6-Enynes. , 2018, Chemistry.

[2]  Joost N H Reek,et al.  Gold Catalysis in (Supra)Molecular Cages to Control Reactivity and Selectivity , 2018, ChemCatChem.

[3]  C. Bannwarth,et al.  GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. , 2018, Journal of chemical theory and computation.

[4]  M. Shi,et al.  Recent Advances in the Cycloisomerizations of Methylenecyclopropanes using Gold Catalysis. , 2018, Chemistry.

[5]  S. Roland,et al.  Confinement of Metal-N-Heterocyclic Carbene Complexes to Control Reactivity in Catalytic Reactions. , 2018, Chemistry.

[6]  L. Toupet,et al.  Aza-capped cyclodextrins for intra-cavity metal complexation. , 2017, Chemical communications.

[7]  M. Bols,et al.  Artificial Metallooxidases from Cyclodextrin Diacids. , 2017, Chemistry.

[8]  S. Menuel,et al.  Water-soluble phosphane-substituted cyclodextrin as an effective bifunctional additive in hydroformylation of higher olefins , 2017 .

[9]  Yongming Zhang,et al.  Artificial Chiral Metallo-pockets Including a Single Metal Serving as Structural Probe and Catalytic Center , 2017 .

[10]  Stefan Grimme,et al.  A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1-86). , 2017, Journal of chemical theory and computation.

[11]  M. Sajid,et al.  Gold catalysis in organic transformations: A review , 2017 .

[12]  Junliang Zhang,et al.  Gold-Catalyzed Enantioselective Annulations. , 2017, Chemistry.

[13]  F. Dean Toste,et al.  Recent advances in enantioselective gold catalysis. , 2016, Chemical Society reviews.

[14]  A. Hashmi,et al.  Gold Catalysis – Steadily Increasing in Importance , 2016 .

[15]  P. Retailleau,et al.  Planar Chiral Phosphoramidites with a Paracyclophane Scaffold: Synthesis, Gold(I) Complexes, and Enantioselective Cycloisomerization of Dienynes. , 2016, Chemistry.

[16]  A. Hashmi,et al.  Gold catalysis in total synthesis - recent achievements. , 2016, Chemical Society reviews.

[17]  C. Farés,et al.  A Striking Case of Enantioinversion in Gold Catalysis and Its Probable Origins. , 2015, Chemistry.

[18]  D. Armspach,et al.  Cyclodextrin and phosphorus(III): a versatile combination for coordination chemistry and catalysis. , 2015, Dalton transactions.

[19]  Yi-Feng Qiu,et al.  AgSCF3-Mediated Trifluoromethylthiolation/Radical Cascade Cyclization of 1,6-Enynes. , 2015, Organic letters.

[20]  A. Echavarren,et al.  Anatomy of gold catalysts: facts and myths , 2015, Organic & biomolecular chemistry.

[21]  A. Echavarren,et al.  Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity , 2015, Chemical reviews.

[22]  Junliang Zhang,et al.  Gold(I)-catalyzed highly diastereo- and enantioselective alkyne oxidation/cyclopropanation of 1,6-enynes. , 2014, Angewandte Chemie.

[23]  Emanuela Licandro,et al.  Phosphathiahelicenes: synthesis and uses in enantioselective gold catalysis. , 2014, Chemistry.

[24]  F. Toste,et al.  Development of catalysts and ligands for enantioselective gold catalysis. , 2014, Accounts of chemical research.

[25]  Pascal Retailleau,et al.  Helicenes with embedded phosphole units in enantioselective gold catalysis. , 2014, Angewandte Chemie.

[26]  M. Bandini,et al.  Enantioselective Gold(I) Catalysis with Chiral Monodentate Ligands , 2013 .

[27]  J. Mascareñas,et al.  Gold(I)-catalyzed enantioselective cycloaddition reactions , 2013, Beilstein journal of organic chemistry.

[28]  D. Armspach,et al.  Phosphane‐Phosphite Chelators Built on a α‐Cyclodextrin Scaffold: Application in Rh‐Catalysed Asymmetric Hydrogenation and Hydroformylation , 2013 .

[29]  C. Amatore,et al.  NHC-capped cyclodextrins (ICyDs): insulated metal complexes, commutable multicoordination sphere, and cavity-dependent catalysis. , 2013, Angewandte Chemie.

[30]  Yongming Zhang,et al.  Diametrically Opposed Carbenes on an α‐Cyclodextrin: Synthesis, Characterization of Organometallic Complexes and Suzuki–Miyaura Coupling in Ethanol and in Water , 2013 .

[31]  Z. Zhao,et al.  Gold catalyzed enantioselective intermolecular [3+2] dipolar cycloaddition of N-allenyl amides with nitrones. , 2013, Chemical communications.

[32]  M. Barbazanges,et al.  Gold Compounds Anchored to a Metalated Arene Scaffold: Synthesis, X-ray Molecular Structures, and Cycloisomerization of Enyne , 2013 .

[33]  G. Prencipe,et al.  An "against the rules" double bank shot with diisobutylaluminum hydride to allow triple functionalization of α-cyclodextrin. , 2013, Angewandte Chemie.

[34]  Samuel Suárez‐Pantiga,et al.  Intermolecular [2+2] reaction of N-allenylsulfonamides with vinylarenes: enantioselective gold(i)-catalyzed synthesis of cyclobutane derivatives. , 2012, Angewandte Chemie.

[35]  W. Thiel,et al.  One-point binding ligands for asymmetric gold catalysis: phosphoramidites with a TADDOL-related but acyclic backbone. , 2012, Journal of the American Chemical Society.

[36]  Rafael Gramage‐Doria,et al.  Non-conventional coordination of cavity-confined metal centres. , 2012, Dalton transactions.

[37]  Hélène Jullien,et al.  Enantioselective, transition metal catalyzed cycloisomerizations. , 2012, Chemical Society reviews.

[38]  Rafael Gramage‐Doria,et al.  Regioselective opening of proximally sulfato-capped cyclodextrins. , 2012, Chemical communications.

[39]  S. Menuel,et al.  Cyclodextrin-phosphane possessing a guest-tunable conformation for aqueous rhodium-catalyzed hydroformylation. , 2012, Chemical communications.

[40]  A. Echavarren,et al.  Phosphate ligands in the gold(I)-catalysed activation of enynes. , 2012, Chemical communications.

[41]  E. Zaborova,et al.  Cavitand supported tetraphosphine: cyclodextrin offers a useful platform for Suzuki-Miyaura cross-coupling. , 2011, Chemical communications.

[42]  A. Fürstner,et al.  Concise synthesis of the antidepressive drug candidate GSK1360707 by a highly enantioselective gold-catalyzed enyne cycloisomerization reaction. , 2011, Chemistry.

[43]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[44]  C. Slomianny,et al.  Synthesis, Rhodium Complexes and Catalytic Applications of a New Water‐Soluble Triphenylphosphane‐Modified β‐Cyclodextrin , 2011 .

[45]  Rafael Gramage‐Doria,et al.  Regioselective double capping of cyclodextrin scaffolds. , 2011, Chemistry.

[46]  W. Goddard,et al.  Phosphoramidite gold(I)-catalyzed diastereo- and enantioselective synthesis of 3,4-substituted pyrrolidines. , 2011, Journal of the American Chemical Society.

[47]  Rafael Gramage‐Doria,et al.  Ditopic binding of cyclodextrin-included ligands in trigonal silver(I) complexes , 2011 .

[48]  Xiaodong Shi,et al.  Recent Advances in Asymmetric Gold Catalysis , 2010 .

[49]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[50]  Ben L. Feringa,et al.  Phosphoramidite: privilegierte Liganden in der asymmetrischen Katalyse , 2010 .

[51]  B. Feringa,et al.  Phosphoramidites: privileged ligands in asymmetric catalysis. , 2010, Angewandte Chemie.

[52]  E. Zaborova,et al.  Can hetero-polysubstituted cyclodextrins be considered as inherently chiral concave molecules? , 2010, Angewandte Chemie.

[53]  A. Fürstner,et al.  Enantioselective gold catalysis: opportunities provided by monodentate phosphoramidite ligands with an acyclic TADDOL backbone. , 2010, Angewandte Chemie.

[54]  A. Lledós,et al.  Gold-catalyzed [4C+2C] cycloadditions of allenedienes, including an enantioselective version with new phosphoramidite-based catalysts: mechanistic aspects of the divergence between [4C+3C] and [4C+2C] pathways. , 2009, Journal of the American Chemical Society.

[55]  T. Ziegler,et al.  On the Nature of the Agostic Bond between Metal Centers and β-Hydrogen Atoms in Alkyl Complexes. An Analysis Based on the Extended Transition State Method and the Natural Orbitals for Chemical Valence Scheme (ETS-NOCV) , 2009 .

[56]  L. Toupet,et al.  Synthesis and properties of TRANSDIP, a rigid chelator built upon a cyclodextrin cavity: is TRANSDIP an authentic trans-spanning ligand? , 2007, Chemistry.

[57]  L. Toupet,et al.  Efficient, Rhodium‐Catalyzed Hydrogenation of α‐Dehydroamino Acid Esters with Chiral Monodentate Aminophosphanes Bearing Two Binaphthyl Groups , 2007 .

[58]  L. Toupet,et al.  Sulfur-capped cyclodextrins: a new class of cavitands with extroverted as well as introverted donor functionalities. , 2006, Chemical communications.

[59]  S. Laschat,et al.  Chiral phosphites and phosphoramidites based on the tropane skeleton and their application in catalysis , 2006 .

[60]  C. Nevado,et al.  Gold(I)-catalyzed cyclizations of 1,6-enynes: alkoxycyclizations and exo/endo skeletal rearrangements. , 2006, Chemistry.

[61]  L. Toupet,et al.  Diastereospecific synthesis of phosphinidene-capped cyclodextrins leading to "introverted" ligands. , 2004, Chemical communications.

[62]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[63]  E. Engeldinger,et al.  Cyclodextrin phosphanes as first and second coordination sphere cavitands. , 2003, Chemistry.

[64]  D. Armspach,et al.  Selective Tetrafunctionalisation of α‐Cyclodextrin using the Supertrityl Protecting Group − Synthesis of the First C2‐Symmetric Tetraphosphane Based on a Cavitand (α‐TEPHOS) , 2003 .

[65]  D. Armspach,et al.  Cyclodextrin‐Encapsulated Iron Catalysts for the Polymerization of Ethylene , 2003 .

[66]  L. Toupet,et al.  Synthesis of large chelate rings with diphosphites built on a cyclodextrin scaffold. Unexpected formation of 1,2-phenylene-capped α-cyclodextrins , 2002 .

[67]  K. Kakiuchi,et al.  CO-transfer carbonylation reactions. A catalytic Pauson-Khand-type reaction of enynes with aldehydes as a source of carbon monoxide. , 2002, Journal of the American Chemical Society.

[68]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[69]  E. Engeldinger,et al.  Cyclodextrin Cavities as Probes for Ligand-Exchange Processes. , 2001, Angewandte Chemie.

[70]  D. Armspach,et al.  Metal-capped alpha-cyclodextrins: squaring the circle. , 2001, Inorganic chemistry.

[71]  D. Armspach,et al.  Anchoring a helical handle across a cavity: the first 2,2′-bipyridyl-capped α-cyclodextrin capable of encapsulating transition metals , 2001 .

[72]  A. Minnaard,et al.  Highly Enantioselective Rhodium-Catalyzed Hydrogenation with Monodentate Ligands , 2000 .

[73]  Evert Jan Baerends,et al.  Geometry optimizations in the zero order regular approximation for relativistic effects. , 1999 .

[74]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[75]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[76]  T. Russo,et al.  Density functional calculations on first‐row transition metals , 1994, chem-ph/9403005.

[77]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[78]  Benny G. Johnson,et al.  The performance of a family of density functional methods , 1993 .

[79]  T. Hoye,et al.  Reactions of pentacarbonyl(1-methoxyethylidene)molybdenum and -tungsten with α,ω-enynes : comparison with the chromium analogue and resulting mechanistic ramifications , 1992 .

[80]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[81]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[82]  A. Rauk,et al.  Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as .sigma. donors and .pi. acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method , 1979 .

[83]  F. Toste,et al.  Gold(I)-catalyzed enantioselective [4 + 2]-cycloaddition of allene-dienes. , 2010, Organic letters.

[84]  D. Armspach,et al.  Metal-capped α-cyclodextrins: the crowning of the oligosaccharide torus with precious metals , 1999 .