О перманентах случайных дважды стохастических матриц и асимптотических оценках чисел латинских прямоугольников и латинских квадратов@@@On permanents of random doubly stochastic matrices and on asymptotic estimates for the number of Latin rectangles and Latin squares

[1]  M. Voorhoeve,et al.  A lower bound for the permanents of certain (0,1)-matrices , 1978 .

[2]  Koichiro Yamamoto,et al.  On the Asymptotic Number of Latin Rectangles , 1951 .

[3]  Lloyd R. Welch,et al.  Permanents of 0, 1-Matrices , 1974, J. Comb. Theory, Ser. A.

[4]  P. R. Stein,et al.  The asymptotic number of (0, 1)-matrices with zero permanent , 1973, Discret. Math..

[5]  Andries E. Brouwer,et al.  A lower bound for the length of partial transversals in a latin square , 1978 .

[6]  Klaas K. Koksma A lower bound for the order of a partial transversal in a latin square , 1969 .

[7]  Jia-Yu Shao,et al.  A formula for the number of Latin squares , 1992, Discret. Math..

[8]  A. Schrijver,et al.  On lower bounds for permanents , 1979 .

[9]  J. Schönheim,et al.  Incomplete Diagonals of Latin Squares , 1969, Canadian Mathematical Bulletin.

[10]  Koichiro Yamamoto,et al.  An Asymptotic Series for the Number of Three-Line Latin Rectangles , 1950 .

[11]  C. Lindner On Completing Latin Rectangles , 1970, Canadian Mathematical Bulletin.

[12]  David E. Woolbright An n x n Latin Square Has a Transversal with at Least n - square root of n Distinct Symbols , 1978, J. Comb. Theory, Ser. A.

[13]  Ervin Gergely,et al.  A Simple Method for Constructing Doubly Diagonalized Latin Squares , 1974, J. Comb. Theory, Ser. A.

[14]  H. Wilf On the Permanent of a Doubly Stochastic Matrix , 1966, Canadian Journal of Mathematics.

[15]  Henryk Minc,et al.  Upper bounds for permanents of $\left( {0,\,1} \right)$-matrices , 1963 .

[16]  Mark B. Wells,et al.  The number of latin squares of order eight , 1967 .

[17]  Brendan D. McKay,et al.  Latin Squares of Order 10 , 1995, Electron. J. Comb..

[18]  Brendan D. McKay,et al.  Asymptotic enumeration of Latin rectangles , 1990, J. Comb. Theory, Ser. B.

[19]  Patrick Eugene O'Neil Asymptotics and random matrices with row-sum and column sum-restrictions , 1969 .

[20]  H. Ryser,et al.  Matrix factorizations of determinants and permanents , 1966 .

[21]  Ronald Alter How Many Latin Squares are There , 1975 .

[22]  Rory A. Fisher,et al.  The 6 × 6 Latin squares , 1934, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  Stanley E. Bammel,et al.  The number of 9 × 9 latin squares , 1975, Discrete Mathematics.

[24]  H. W. Norton THE 7 × 7 SQUARES , 1939 .

[25]  Charles M. Stein,et al.  Asymptotic Evaluation of the Number of Latin Rectangles , 1978, J. Comb. Theory, Ser. A.

[26]  Paul Erdös,et al.  The Asymptotic Number of Latin Rectangles , 1946 .