О перманентах случайных дважды стохастических матриц и асимптотических оценках чисел латинских прямоугольников и латинских квадратов@@@On permanents of random doubly stochastic matrices and on asymptotic estimates for the number of Latin rectangles and Latin squares
暂无分享,去创建一个
[1] M. Voorhoeve,et al. A lower bound for the permanents of certain (0,1)-matrices , 1978 .
[2] Koichiro Yamamoto,et al. On the Asymptotic Number of Latin Rectangles , 1951 .
[3] Lloyd R. Welch,et al. Permanents of 0, 1-Matrices , 1974, J. Comb. Theory, Ser. A.
[4] P. R. Stein,et al. The asymptotic number of (0, 1)-matrices with zero permanent , 1973, Discret. Math..
[5] Andries E. Brouwer,et al. A lower bound for the length of partial transversals in a latin square , 1978 .
[6] Klaas K. Koksma. A lower bound for the order of a partial transversal in a latin square , 1969 .
[7] Jia-Yu Shao,et al. A formula for the number of Latin squares , 1992, Discret. Math..
[8] A. Schrijver,et al. On lower bounds for permanents , 1979 .
[9] J. Schönheim,et al. Incomplete Diagonals of Latin Squares , 1969, Canadian Mathematical Bulletin.
[10] Koichiro Yamamoto,et al. An Asymptotic Series for the Number of Three-Line Latin Rectangles , 1950 .
[11] C. Lindner. On Completing Latin Rectangles , 1970, Canadian Mathematical Bulletin.
[12] David E. Woolbright. An n x n Latin Square Has a Transversal with at Least n - square root of n Distinct Symbols , 1978, J. Comb. Theory, Ser. A.
[13] Ervin Gergely,et al. A Simple Method for Constructing Doubly Diagonalized Latin Squares , 1974, J. Comb. Theory, Ser. A.
[14] H. Wilf. On the Permanent of a Doubly Stochastic Matrix , 1966, Canadian Journal of Mathematics.
[15] Henryk Minc,et al. Upper bounds for permanents of $\left( {0,\,1} \right)$-matrices , 1963 .
[16] Mark B. Wells,et al. The number of latin squares of order eight , 1967 .
[17] Brendan D. McKay,et al. Latin Squares of Order 10 , 1995, Electron. J. Comb..
[18] Brendan D. McKay,et al. Asymptotic enumeration of Latin rectangles , 1990, J. Comb. Theory, Ser. B.
[19] Patrick Eugene O'Neil. Asymptotics and random matrices with row-sum and column sum-restrictions , 1969 .
[20] H. Ryser,et al. Matrix factorizations of determinants and permanents , 1966 .
[21] Ronald Alter. How Many Latin Squares are There , 1975 .
[22] Rory A. Fisher,et al. The 6 × 6 Latin squares , 1934, Mathematical Proceedings of the Cambridge Philosophical Society.
[23] Stanley E. Bammel,et al. The number of 9 × 9 latin squares , 1975, Discrete Mathematics.
[24] H. W. Norton. THE 7 × 7 SQUARES , 1939 .
[25] Charles M. Stein,et al. Asymptotic Evaluation of the Number of Latin Rectangles , 1978, J. Comb. Theory, Ser. A.
[26] Paul Erdös,et al. The Asymptotic Number of Latin Rectangles , 1946 .