Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis

Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the formation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu’s surface is globally rough, dense with boulders, and low in albedo. The number of boulders is surprising given Bennu’s moderate thermal inertia, suggesting that simple models linking thermal inertia to particle size do not adequately capture the complexity relating these properties. At the same time, we find evidence for a wide range of particle sizes with distinct albedo characteristics. Our findings imply that ages of Bennu’s surface particles span from the disruption of the asteroid’s parent body (boulders) to recent in situ production (micrometre-scale particles).Bennu’s surface presents evidence of a variety of particle sizes, from fine regolith to metre-sized boulders. Its moderate thermal inertia suggests that the boulders are very porous or blanketed by thin dust. Bennu’s boulders exhibit high albedo variations, indicating different origins and/or ages.

D. N. DellaGiustina | M. C. Nolan | K. N. Burke | C. W. Hergenrother | B. Rizk | J. Licandro | D. S. Lauretta | S. R. Schwartz | A. A. Simon | C. A. Thomas | R. P. Binzel | K. J. Becker | M. Popescu | V. E. Hamilton | M. A. Barucci | D. R. Golish | E. B. Bierhaus | E. R. Jawin | the OSIRIS-REx Team | M. A. Siegler | D. C. Reuter | S. Fornasier | M. Pajola | D. Reuter | P. H. Smith | D. DellaGiustina | E. Asphaug | M. Nolan | W. Bottke | B. Clark | J. Bandfield | V. Hamilton | P. Michel | O. Barnouin | S. Schwartz | E. Howell | B. Rozitis | K. Walsh | B. Clark | D. Lauretta | M. Daly | J. Licandro | H. Campins | M. Popescu | M. Barucci | R. Binzel | J.‐Y. Li | E. Tatsumi | R. Ballouz | K. Becker | E. Jawin | J. Emery | A. Ryan | N. Bowles | M. Pajola | S. Fornasier | H. Connolly | C. Elder | J. Deshapriya | A. Simon | J. Molaro | L. Lim | D. Golish | M. Siegler | L. Corre | B. Rizk | C. D. Drouet d’Aubigny | C. Hergenrother | C. Bennett | E. Bierhaus | P. R. Christensen | C. Wolner | J.-Y. Li | E. S. Howell | C. A. Bennett | L. F. Lim | O. S. Barnouin | W. F. Bottke | K. J. Walsh | B. E. Clark | M. G. Daly | J. P. Emery | B. Rozitis | B. C. Clark | H. Kaplan | J. de Leon | J. L. Bandfield | R.-L. Ballouz | P. Michel | The OSIRIS-REx Team | H. Campins | H. C. Jr. Connolly | X. Zou | E. Asphaug | C. Y. Drouet d’Aubigny | C. W. V. Wolner | N. E. Bowles | M. Delbo’ | J. D. P. Deshapriya | C. M. Elder | H. H. Kaplan | T. R. Kareta | L. Corre | J. Molaro | J. L. Rizos Garcia | A. Ryan | N. Shultz | E. Tatsumi | X.-D. Zou | K. Burke | N. Shultz | C. Thomas | T. Kareta | M. Delbo’ | Jolai R. Garcia | P. Christensen | J. Leon | T. Kareta

[1]  S. Murchie,et al.  Color Variations on Eros from NEAR Multispectral Imaging , 2002 .

[2]  M. K. Crombie,et al.  OSIRIS-REx: Sample Return from Asteroid (101955) Bennu , 2017, Space Science Reviews.

[3]  J. Blum,et al.  A new method to determine the grain size of planetary regolith , 2012, 1212.3108.

[4]  The influence of rough surface thermal-infrared beaming on the Yarkovsky and YORP effects , 2012, 1203.1464.

[5]  Kazunori Ogawa,et al.  Thermal conductivity model for powdered materials under vacuum based on experimental studies , 2015 .

[6]  M. C. Nolan,et al.  The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements , 2019, Nature Astronomy.

[7]  H. Melosh,et al.  Using lunar boulders to distinguish primary from distant secondary impact craters , 2007 .

[8]  E. al.,et al.  Thermal infrared observations of the Hayabusa spacecraft target asteroid 25143 Itokawa , 2005, astro-ph/0509434.

[9]  B. Rozitis The surface roughness of (433) Eros as measured by thermal-infrared beaming , 2016, 1609.06909.

[10]  M. K. Crombie,et al.  Shape of (101955) Bennu indicative of a rubble pile with internal stiffness , 2019, Nature geoscience.

[11]  S. Hasegawa,et al.  Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): Searching for the object's spin-axis orientation , 2016, 1611.05625.

[12]  H. J. Moore,et al.  Standard techniques for presentation and analysis of crater size-frequency data , 1978 .

[13]  C. Russell,et al.  Spectrophotometric modeling and mapping of Ceres , 2016, Icarus.

[14]  P. Tanga,et al.  Collisions and Gravitational Reaccumulation: Forming Asteroid Families and Satellites , 2001, Science.

[15]  Olivier S. Barnouin,et al.  Methodology for finding and evaluating safe landing sites on small bodies , 2016 .

[16]  Richard P. Binzel,et al.  Asteroid (101955) 1999 RQ36: Spectroscopy from 0.4 to 2.4μm and meteorite analogs , 2011 .

[17]  B. Jakosky On the thermal properties of Martian fines , 1986 .

[18]  Paul Mann,et al.  Phase reddening on near-Earth asteroids: Implications for mineralogical analysis, space weathering and taxonomic classification , 2012, 1205.0248.

[19]  P. Michel,et al.  Thermal fatigue as the origin of regolith on small asteroids , 2014, Nature.

[20]  D. Lauretta,et al.  Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu , 2014 .

[21]  J. Spencer A rough-surface thermophysical model for airless planets , 1990 .

[22]  Richard P. Binzel,et al.  Lightcurve, Color and Phase Function Photometry of the OSIRIS-REx Target Asteroid (101955) Bennu , 2013 .

[23]  O. Barnouin,et al.  Block distributions on Itokawa , 2014 .

[24]  A. Nakamura,et al.  Velocity of finer fragments from impact , 1994 .

[25]  The influence of global self-heating on the Yarkovsky and YORP effects , 2012, 1304.7656.

[26]  R. Morris,et al.  Spectral and chemical effects of simulated space weathering of the Murchison CM2 carbonaceous chondrite , 2019, Icarus.

[27]  K. Walsh Rubble Pile Asteroids , 2018, Annual Review of Astronomy and Astrophysics.

[28]  Daniel J. Scheeres,et al.  Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and lightcurve observations , 2013 .

[29]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[30]  E. Weigle,et al.  The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu , 2017, 1703.10574.

[31]  O. Barnouin,et al.  Improved techniques for size–frequency distribution analysis in the planetary sciences: Application to blocks on 25143 Itokawa , 2015 .

[32]  F. DeMeo,et al.  Space weathering trends on carbonaceous asteroids: A possible explanation for Bennu’s blue slope? , 2018 .

[33]  Richard P. Binzel,et al.  The OSIRIS‐REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations , 2015 .

[34]  T. J. McCoy,et al.  Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface , 2019, Nature Geoscience.

[35]  D. Britt,et al.  Stony meteorite thermal properties and their relationship with meteorite chemical and physical states , 2012 .

[36]  M. K. Crombie,et al.  The Unexpected Surface of Asteroid (101955) Bennu , 2019, Nature.

[37]  J. Blum,et al.  Outgassing of icy bodies in the Solar System – II: Heat transport in dry, porous surface dust layers , 2011, 1111.0535.

[38]  A. Ryan Heat and Mass Transfer on Planetary Surfaces , 2018 .

[39]  K. Muinonen,et al.  Asteroid photometric and polarimetric phase curves: Joint linear‐exponential modeling , 2009 .

[40]  J. Ďurech,et al.  Thermophysical modeling of main-belt asteroids from WISE thermal data , 2018, Icarus.

[41]  R. Greeley,et al.  Ejecta Blocks on 243 Ida and on Other Asteroids , 1996 .

[42]  Torrence V. Johnson,et al.  Optical properties of carbonaceous chondrites and their relationship to asteroids , 1973 .

[43]  A. Nakamura,et al.  Size-frequency statistics of boulders on global surface of asteroid 25143 Itokawa , 2008 .

[44]  R. Jaumann,et al.  The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes , 2019, Science.

[45]  M. Robinson,et al.  Global survey of color variations on 433 Eros: Implications for regolith processes and asteroid environments , 2008 .

[46]  J. Terazono,et al.  Detailed Images of Asteroid 25143 Itokawa from Hayabusa , 2006, Science.

[47]  D R Golish,et al.  The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations , 2019, Nature Communications.

[48]  C. Pilorget,et al.  Wavelength dependence of scattering properties in the VIS–NIR and links with grain-scale physical and compositional properties , 2016 .

[49]  M. K. Crombie,et al.  Evidence for widespread hydrated minerals on asteroid (101955) Bennu , 2019, Nature Astronomy.

[50]  S. Green,et al.  Physical characterisation of near-Earth asteroid (1620) Geographos. Reconciling radar and thermal-infrared observations , 2014, 1407.2127.

[51]  V. E. Hamilton,et al.  The OSIRIS-REx Thermal Emission Spectrometer (OTES) Instrument , 2018, Space Science Reviews.

[52]  D. Scheeres,et al.  Scaling forces to asteroid surfaces: The role of cohesion , 2010, 1002.2478.

[53]  H. L. Enos,et al.  Overcoming the Challenges Associated with Image‐Based Mapping of Small Bodies in Preparation for the OSIRIS‐REx Mission to (101955) Bennu , 2018, Earth and Space Science.

[54]  R. Tanner,et al.  OCAMS: The OSIRIS-REx Camera Suite , 2017, 1704.04531.

[55]  Humberto Campins,et al.  Differences between the Pallas collisional family and similarly sized B-type asteroids ? , 2016 .

[56]  S. Green,et al.  Observing the variation of asteroid thermal inertia with heliocentric distance , 2018 .

[57]  B. V. Semenov,et al.  A look towards the future in the handling of space science mission geometry , 2018 .

[58]  Junichiro Kawaguchi,et al.  Irradiation History of Itokawa Regolith Material Deduced from Noble Gases in the Hayabusa Samples , 2011, Science.

[59]  R. Jaumann,et al.  Surface Geomorphology of Near Earth Asteroid (162173) Ryugu from in-situ Observations: First Results from the MASCOT Camera , 2018 .

[60]  H. Kieffer,et al.  The Spectral Irradiance of the Moon , 2005 .

[61]  Guy J. Consolmagno,et al.  The thermal conductivity of meteorites: New measurements and analysis , 2010 .

[62]  S. Green,et al.  Directional characteristics of thermal–infrared beaming from atmosphereless planetary surfaces – a new thermophysical model , 2011, 1211.1844.

[63]  N. Sakatani,et al.  Thermal conductivity of lunar regolith simulant JSC-1A under vacuum , 2018, Icarus.

[64]  nasa,et al.  Standard techniques for presentation and analysis of crater size-frequency data , 2019 .

[65]  H. J. Moore,et al.  Spray Ejected from the Lunar Surface by Meteoroid Impact , 1963 .