DCC: a framework for dynamic granular clustering

AbstractClustering is one of the most relevant data mining tasks. Its goal is to group similar objects in one cluster while dissimilar objects should belong to different clusters. Many extensions have been developed based on traditional cluster algorithms. Recently, approaches for dynamic as well as for granular clustering have been of particular interest. This paper provides a framework, DCC-Dynamic Clustering Cube, to categorize existing dynamic granular clustering algorithms. Furthermore, the DCC-Framework can be used as a research map and starting point for new developments in this area.

[1]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[2]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[3]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[4]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[5]  D. E. Bell,et al.  Decision making: Descriptive, normative, and prescriptive interactions. , 1990 .

[6]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[7]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[8]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[9]  L.A. Zadeh,et al.  Information granulation and its centrality in human and machine intelligence , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[10]  Witold Pedrycz,et al.  Shadowed sets: representing and processing fuzzy sets , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[11]  H. Zimmermann,et al.  Dynamic fuzzy data analysis based on similarity between functions , 1999, Fuzzy Sets Syst..

[12]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[13]  Witold Pedrycz,et al.  Granular Computing - The Emerging Paradigm , 2007 .

[14]  Hava T. Siegelmann,et al.  Support Vector Clustering , 2002, J. Mach. Learn. Res..

[15]  Witold Pedrycz,et al.  Granular computing: an introduction , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[16]  I. Jolliffe Principal Component Analysis , 2002 .

[17]  Philip S. Yu,et al.  A Framework for Clustering Evolving Data Streams , 2003, VLDB.

[18]  I. Guyon,et al.  Detecting stable clusters using principal component analysis. , 2003, Methods in molecular biology.

[19]  Pawan Lingras,et al.  Clustering Supermarket Customers Using Rough Set Based Kohonen Networks , 2003, ISMIS.

[20]  Pawan Lingras,et al.  Interval Set Clustering of Web Users with Rough K-Means , 2004, Journal of Intelligent Information Systems.

[21]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[22]  Witold Pedrycz,et al.  Knowledge-based clustering - from data to information granules , 2007 .

[23]  Yiyu Yao,et al.  Perspectives of granular computing , 2005, 2005 IEEE International Conference on Granular Computing.

[24]  Richard Weber,et al.  A methodology for dynamic data mining based on fuzzy clustering , 2005, Fuzzy Sets Syst..

[25]  Lotfi A. Zadeh,et al.  Generalized theory of uncertainty (GTU) - principal concepts and ideas , 2006, Comput. Stat. Data Anal..

[26]  Marc Teboulle,et al.  Grouping Multidimensional Data - Recent Advances in Clustering , 2006 .

[27]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[28]  R. Baeza-Yates,et al.  Text Mining of Business News for Forecasting , 2006, 17th International Workshop on Database and Expert Systems Applications (DEXA'06).

[29]  Vladik Kreinovich,et al.  Interval Computations as an Important Part of Granular Computing: An Introduction , 2007 .

[30]  Frank Klawonn,et al.  Dynamic data assigning assessment clustering of streaming data , 2008, Appl. Soft Comput..

[31]  Yiyu Yao,et al.  Granular computing: Past, present and future , 2008, 2008 IEEE International Conference on Granular Computing.

[32]  Vladik Kreinovich,et al.  Handbook of Granular Computing , 2008 .

[33]  Yiyu Yao,et al.  A Unified Framework of Granular Computing , 2008 .

[34]  Lior Rokach,et al.  A survey of Clustering Algorithms , 2010, Data Mining and Knowledge Discovery Handbook.

[35]  Yiannis Kompatsiaris,et al.  Community detection in Social Media , 2012, Data Mining and Knowledge Discovery.

[36]  João Gama,et al.  A survey on learning from data streams: current and future trends , 2012, Progress in Artificial Intelligence.

[37]  Guohong Gao,et al.  Research of Hierarchical Clustering Based on Dynamic Granular Computing , 2011, J. Comput..

[38]  Richard Weber,et al.  Dynamic clustering with soft computing , 2012, WIREs Data Mining Knowl. Discov..

[39]  Richard Weber,et al.  Dynamic rough clustering and its applications , 2012, Appl. Soft Comput..

[40]  Andrzej Bargiela,et al.  An Optimization of Allocation of Information Granularity in the Interpretation of Data Structures: Toward Granular Fuzzy Clustering , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[41]  Richard Weber,et al.  Soft clustering - Fuzzy and rough approaches and their extensions and derivatives , 2013, Int. J. Approx. Reason..

[42]  Witold Pedrycz,et al.  Granular Computing: Analysis and Design of Intelligent Systems , 2013 .

[43]  Georg Peters,et al.  Rough clustering utilizing the principle of indifference , 2014, Inf. Sci..

[44]  Graham Farrell,et al.  Police performance measurement: an annotated bibliography , 2015 .

[45]  Christopher R. Herrmann The dynamics of robbery and violence hot spots , 2015, Crime Science.

[46]  Witold Pedrycz,et al.  Clustering Granular Data and Their Characterization With Information Granules of Higher Type , 2015, IEEE Transactions on Fuzzy Systems.

[47]  Ramiro Saltos Atiencia,et al.  Rough-Fuzzy Support Vector Domain Description for outlier detection , 2015, FUZZ-IEEE.