Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems

[1]  P. Bork,et al.  A global ocean atlas of eukaryotic genes , 2018, Nature Communications.

[2]  P. Bork,et al.  Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans , 2018, Nature Communications.

[3]  M. Gut,et al.  Evaluation of single-cell genomics to address evolutionary questions using three SAGs of the choanoflagellate Monosiga brevicollis , 2017, Scientific Reports.

[4]  Brian P. Thompson,et al.  Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles , 2017, Nature Communications.

[5]  O. Jaillon,et al.  Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells , 2017, Scientific Reports.

[6]  E. Pelletier,et al.  Survey of the green picoalga Bathycoccus genomes in the global ocean , 2016, Scientific Reports.

[7]  J. Claverie,et al.  Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. , 2015, Environmental microbiology.

[8]  P. Bork,et al.  Eukaryotic plankton diversity in the sunlit ocean , 2015, Science.

[9]  Peer Bork,et al.  Open science resources for the discovery and analysis of Tara Oceans data , 2015, Scientific Data.

[10]  I. Boothby One Cell at a Time , 2015, Cell.

[11]  Sarah R. Smith,et al.  The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing , 2014, PLoS biology.

[12]  M. Melkonian,et al.  Picomonas judraskeda Gen. Et Sp. Nov.: The First Identified Member of the Picozoa Phylum Nov., a Widespread Group of Picoeukaryotes, Formerly Known as ‘Picobiliphytes’ , 2013, PloS one.

[13]  M. Sieracki,et al.  Taming the smallest predators of the oceans , 2012, The ISME Journal.

[14]  K. Richardson,et al.  Choice of Pore Size Can Introduce Artefacts when Filtering Picoeukaryotes for Molecular Biodiversity Studies , 2013, Microbial Ecology.

[15]  D. Vaulot,et al.  Unicellular Cyanobacterium Symbiotic with a Single-Celled Eukaryotic Alga , 2012, Science.

[16]  W. Nelson,et al.  Comparative Analysis of Eukaryotic Marine Microbial Assemblages from 18S rRNA Gene and Gene Transcript Clone Libraries by Using Different Methods of Extraction , 2012, Applied and Environmental Microbiology.

[17]  R. Stepanauskas,et al.  Unveiling in situ interactions between marine protists and bacteria through single cell sequencing , 2011, The ISME Journal.

[18]  S. Neuer,et al.  The importance of organism density and co-occurring organisms in biases associated with molecular studies of marine protist diversity , 2011 .

[19]  P. Bork,et al.  A Holistic Approach to Marine Eco-Systems Biology , 2011, PLoS biology.

[20]  E. Delong,et al.  Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean , 2011, Science.

[21]  R. Stepanauskas,et al.  Single-Cell Genomics Reveals Organismal Interactions in Uncultivated Marine Protists , 2011, Science.

[22]  R. Stepanauskas,et al.  Capturing diversity of marine heterotrophic protists: one cell at a time , 2011, The ISME Journal.

[23]  J. Bunge,et al.  Sequence diversity and novelty of natural assemblages of picoeukaryotes from the Indian Ocean , 2011, The ISME Journal.

[24]  D. Vaulot,et al.  Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes , 2008 .

[25]  Glen A. Tarran,et al.  High bacterivory by the smallest phytoplankton in the North Atlantic Ocean , 2008, Nature.

[26]  Maureen L. Coleman,et al.  Microbial community gene expression in ocean surface waters , 2008, Proceedings of the National Academy of Sciences.

[27]  R. Stepanauskas,et al.  Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time , 2007, Proceedings of the National Academy of Sciences.

[28]  D. Vaulot,et al.  Picobiliphytes: A Marine Picoplanktonic Algal Group with Unknown Affinities to Other Eukaryotes , 2007, Science.

[29]  P. Burkill,et al.  Flow cytometric enumeration of DNA-stained oceanic planktonic protists , 2006 .

[30]  Marti J. Anderson,et al.  Multivariate dispersion as a measure of beta diversity. , 2006, Ecology letters.

[31]  G. Church,et al.  Sequencing genomes from single cells by polymerase cloning , 2006, Nature Biotechnology.

[32]  S. Adl,et al.  The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists , 2005, The Journal of eukaryotic microbiology.

[33]  D. Vaulot,et al.  Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. , 2005, FEMS microbiology ecology.

[34]  Daniel Vaulot,et al.  Phytoplankton Cell Counting by Flow Cytometry , 2005 .

[35]  P. Krader,et al.  Glycine betaine as a cryoprotectant for prokaryotes. , 2004, Journal of microbiological methods.

[36]  D. Caron,et al.  Counting heterotrophic nanoplanktonic protists in cultures and aquatic communities by flow cytometry , 2004 .

[37]  Ramon Massana,et al.  Study of Genetic Diversity of Eukaryotic Picoplankton in Different Oceanic Regions by Small-Subunit rRNA Gene Cloning and Sequencing , 2001, Applied and Environmental Microbiology.

[38]  R. Wachter,et al.  Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity , 2001, Nature.

[39]  D. Caron,et al.  Heterotrophic and mixotrophic nanoplankton predation on picoplankton in the Sargasso Sea and on Georges Bank , 2000 .

[40]  M. J. Chretiennot-Dinet,et al.  A new marine picoeucaryote: Ostreococcus tauri gen. et sp. nov. (Chlorophyta, Prasinophyceae) , 1995 .

[41]  D. Stoecker,et al.  Large proportion of marine planktonic ciliates found to contain functional chloroplasts , 1987, Nature.