The Flagged Cauchy Determinant
暂无分享,去创建一个
William Y. C. Chen | Christian Krattenthaler | Arthur L. B. Yang | William Y. C. Chen | C. Krattenthaler | A. Yang
[1] Ira M. Gessel,et al. Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.
[2] Christian Krattenthaler,et al. Non-crossing two-rowed arrays and summations for Schur functions , 1993 .
[3] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[4] Symplectic Shifted Tableaux and Deformations of Weyl's Denominator Formula for sp(2n) , 2002 .
[5] A. Lascoux. Symmetric Functions and Combinatorial Operators on Polynomials , 2003 .
[6] Ian P. Goulden,et al. Planar decompositions of tableaux and Schur function determinants , 1995, Eur. J. Comb..
[7] Mihai Ciucu,et al. Enumeration of Lozenge Tilings of Hexagons with a Central Triangular Hole , 2001, J. Comb. Theory, Ser. A.
[8] I. Gessel,et al. Binomial Determinants, Paths, and Hook Length Formulae , 1985 .
[9] Sergey Fomin,et al. Schensted Algorithms for Dual Graded Graphs , 1995 .
[10] Michelle L. Wachs,et al. Flagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators , 1985, J. Comb. Theory, Ser. A.
[11] Christian Krattenthaler,et al. Lattice Path Proofs for Determinantal Formulas for Symplectic and Orthogonal Characters , 1997, J. Comb. Theory, Ser. A.
[12] Angèle M. Hamel,et al. Pfaffians and Determinants for Schur Q-Functions , 1996, J. Comb. Theory, Ser. A.
[13] Samuel Karlin,et al. COINCIDENT PROPERTIES OF BIRTH AND DEATH PROCESSES , 1959 .
[14] John R. Stembridge,et al. Nonintersecting Paths, Pfaffians, and Plane Partitions , 1990 .
[15] William Y. C. Chen,et al. The Flagged Double Schur Function , 2002 .
[16] David M. Bressoud,et al. Determinental Formulae for Complete Symmetric Functions , 1992, J. Comb. Theory, Ser. A.
[17] Ira M. Gessel,et al. Determinants, Paths, and Plane Partitions , 1989 .
[18] Bruce E. Sagan,et al. Robinson-schensted algorithms for skew tableaux , 1990, J. Comb. Theory A.
[19] Curtis Greene,et al. A New Tableau Representation for Supersymmetric Schur Functions , 1994 .
[20] Tom Roby,et al. Applications and extensions of Fomin's generalization of the Robinson-Schensted correspondence to differential posets , 1991 .
[21] A. Hamel. Determinantal Forms for Symplectic and Orthogonal Schur Functions , 1997, Canadian Journal of Mathematics.
[22] C. Krattenthaler. Oscillating tableaux and nonintersecting lattice paths , 1996 .
[23] F. Brenti. Determinants of Super-Schur Functions, Lattice Paths, and Dotted Plane Partitions , 1993 .
[24] Lattice path proof of the ribbon determinant formula for Schur functions , 1991 .
[25] B. Lindström. On the Vector Representations of Induced Matroids , 1973 .