Generalized Rough Polyharmonic Splines for Multiscale PDEs with Rough Coefficients

In this paper, we demonstrate the construction of generalized Rough Polyhamronic Splines (GRPS) within the Bayesian framework, in particular, for multiscale PDEs with rough coefficients. The optimal coarse basis can be derived automatically by the randomization of the original PDEs with a proper prior distribution and the conditional expectation given partial information on edge or derivative measurements. We prove the (quasi)-optimal localization and approximation properties of the obtained bases, and justify the theoretical results with numerical experiments.

[1]  Assyr Abdulle,et al.  Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..

[2]  Grégoire Allaire,et al.  A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..

[3]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[4]  L. Durlofsky Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .

[5]  Houman Owhadi,et al.  Localized Bases for Finite-Dimensional Homogenization Approximations with Nonseparated Scales and High Contrast , 2010, Multiscale Model. Simul..

[6]  Yalchin Efendiev,et al.  Coarse-Grid Multiscale Model Reduction Techniques for Flows in Heterogeneous Media and Applications , 2012 .

[7]  Houman Owhadi,et al.  Kernel Mode Decomposition and programmable/interpretable regression networks , 2019, ArXiv.

[8]  Daniel Peterseim,et al.  Eliminating the pollution effect in Helmholtz problems by local subscale correction , 2014, Math. Comput..

[9]  Daniel Peterseim,et al.  Multiscale Partition of Unity , 2013, 1312.5922.

[10]  Houman Owhadi,et al.  Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..

[11]  Ruo Li,et al.  An Efficient High Order Heterogeneous Multiscale Method for Elliptic Problems , 2012, Multiscale Model. Simul..

[12]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[13]  Houman Owhadi,et al.  Homogenization of Parabolic Equations with a Continuum of Space and Time Scales , 2007, SIAM J. Numer. Anal..

[14]  Alexei Novikov,et al.  Introduction to the Network Approximation Method for Materials Modeling , 2013 .

[15]  Houman Owhadi,et al.  Bayesian Numerical Homogenization , 2014, Multiscale Model. Simul..

[16]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[17]  Lei Zhang,et al.  Iterated numerical homogenization for multi-scale elliptic equations with monotone nonlinearity , 2021, Multiscale Model. Simul..

[18]  Houman Owhadi,et al.  Kernel Flows: from learning kernels from data into the abyss , 2018, J. Comput. Phys..

[19]  T. Hou,et al.  Analysis of upscaling absolute permeability , 2002 .

[20]  Yalchin Efendiev,et al.  An Adaptive Generalized Multiscale Discontinuous Galerkin Method for High-Contrast Flow Problems , 2018, Multiscale Model. Simul..

[21]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[22]  Houman Owhadi,et al.  Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization , 2019 .

[23]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[24]  R. Verfürth,et al.  Error estimates for some quasi-interpolation operators , 1999 .

[25]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[26]  Yunqing Huang,et al.  A mixed multiscale finite element method for convex optimal control problems with oscillating coefficients , 2015, Comput. Math. Appl..

[27]  Yalchin Efendiev,et al.  Residual-driven online generalized multiscale finite element methods , 2015, J. Comput. Phys..

[28]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[29]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[30]  H. Owhadi,et al.  Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast , 2009, 0901.1463.

[31]  S. Repin,et al.  Exact constants in Poincaré type inequalities for functions with zero mean boundary traces , 2012, 1211.2224.

[32]  H. Owhadi,et al.  Metric‐based upscaling , 2007 .

[33]  Zhiming Chen,et al.  A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..

[34]  Guanglian Li,et al.  Edge multiscale methods for elliptic problems with heterogeneous coefficients , 2018, J. Comput. Phys..

[35]  Houman Owhadi,et al.  Global Energy Matching Method for Atomistic-to-Continuum Modeling of Self-Assembling Biopolymer Aggregates , 2010, Multiscale Model. Simul..

[36]  P. Henning,et al.  A localized orthogonal decomposition method for semi-linear elliptic problems , 2012, 1211.3551.

[37]  H. Owhadi,et al.  Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.

[38]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[39]  Ralf Kornhuber,et al.  Numerical Homogenization of Elliptic Multiscale Problems by Subspace Decomposition , 2016, Multiscale Model. Simul..

[40]  Mark A. Girolami,et al.  Bayesian Probabilistic Numerical Methods , 2017, SIAM Rev..

[41]  Todd Arbogast,et al.  Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..