暂无分享,去创建一个
[1] Assyr Abdulle,et al. Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..
[2] Grégoire Allaire,et al. A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..
[3] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[4] L. Durlofsky. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .
[5] Houman Owhadi,et al. Localized Bases for Finite-Dimensional Homogenization Approximations with Nonseparated Scales and High Contrast , 2010, Multiscale Model. Simul..
[6] Yalchin Efendiev,et al. Coarse-Grid Multiscale Model Reduction Techniques for Flows in Heterogeneous Media and Applications , 2012 .
[7] Houman Owhadi,et al. Kernel Mode Decomposition and programmable/interpretable regression networks , 2019, ArXiv.
[8] Daniel Peterseim,et al. Eliminating the pollution effect in Helmholtz problems by local subscale correction , 2014, Math. Comput..
[9] Daniel Peterseim,et al. Multiscale Partition of Unity , 2013, 1312.5922.
[10] Houman Owhadi,et al. Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..
[11] Ruo Li,et al. An Efficient High Order Heterogeneous Multiscale Method for Elliptic Problems , 2012, Multiscale Model. Simul..
[12] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[13] Houman Owhadi,et al. Homogenization of Parabolic Equations with a Continuum of Space and Time Scales , 2007, SIAM J. Numer. Anal..
[14] Alexei Novikov,et al. Introduction to the Network Approximation Method for Materials Modeling , 2013 .
[15] Houman Owhadi,et al. Bayesian Numerical Homogenization , 2014, Multiscale Model. Simul..
[16] E. Weinan,et al. Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .
[17] Lei Zhang,et al. Iterated numerical homogenization for multi-scale elliptic equations with monotone nonlinearity , 2021, Multiscale Model. Simul..
[18] Houman Owhadi,et al. Kernel Flows: from learning kernels from data into the abyss , 2018, J. Comput. Phys..
[19] T. Hou,et al. Analysis of upscaling absolute permeability , 2002 .
[20] Yalchin Efendiev,et al. An Adaptive Generalized Multiscale Discontinuous Galerkin Method for High-Contrast Flow Problems , 2018, Multiscale Model. Simul..
[21] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[22] Houman Owhadi,et al. Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization , 2019 .
[23] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[24] R. Verfürth,et al. Error estimates for some quasi-interpolation operators , 1999 .
[25] Yalchin Efendiev,et al. Multiscale Finite Element Methods: Theory and Applications , 2009 .
[26] Yunqing Huang,et al. A mixed multiscale finite element method for convex optimal control problems with oscillating coefficients , 2015, Comput. Math. Appl..
[27] Yalchin Efendiev,et al. Residual-driven online generalized multiscale finite element methods , 2015, J. Comput. Phys..
[28] John E. Osborn,et al. Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..
[29] T. Hughes,et al. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .
[30] H. Owhadi,et al. Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast , 2009, 0901.1463.
[31] S. Repin,et al. Exact constants in Poincaré type inequalities for functions with zero mean boundary traces , 2012, 1211.2224.
[32] H. Owhadi,et al. Metric‐based upscaling , 2007 .
[33] Zhiming Chen,et al. A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..
[34] Guanglian Li,et al. Edge multiscale methods for elliptic problems with heterogeneous coefficients , 2018, J. Comput. Phys..
[35] Houman Owhadi,et al. Global Energy Matching Method for Atomistic-to-Continuum Modeling of Self-Assembling Biopolymer Aggregates , 2010, Multiscale Model. Simul..
[36] P. Henning,et al. A localized orthogonal decomposition method for semi-linear elliptic problems , 2012, 1211.3551.
[37] H. Owhadi,et al. Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.
[38] Daniel Peterseim,et al. Localization of elliptic multiscale problems , 2011, Math. Comput..
[39] Ralf Kornhuber,et al. Numerical Homogenization of Elliptic Multiscale Problems by Subspace Decomposition , 2016, Multiscale Model. Simul..
[40] Mark A. Girolami,et al. Bayesian Probabilistic Numerical Methods , 2017, SIAM Rev..
[41] Todd Arbogast,et al. Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..