The tidal response of Ganymede and Callisto with and without liquid water oceans

Calculations of the tidal responses of Ganymede and Callisto reveal that tidal amplitudes on these bodies may be as large as a few meters if a liquid ocean exists to decouple the surface ice from the interior. Tides on Ganymede's surface can exceed 7 m peak-to-peak variation, while on Callisto the tidal amplitude can exceed 5 m in the presence of a liquid ocean. Without an ocean, tidal amplitudes are less than 0.5 m on Ganymede and less than 0.3 m on Callisto. An orbiting spacecraft using an altimeter for crossover analysis and Doppler tracking from Earth should be able to achieve sufficient accuracy to identify the tidal amplitude to within about a meter over the course of a few months (observing tens of tidal cycles).

[1]  R. A. Jacobson,et al.  Distribution of rock, metals, and ices in Callisto. , 1998, Science.

[2]  Tilman Spohn,et al.  Oceans in the icy Galilean satellites of Jupiter , 2002 .

[3]  F. Dahlen On the Static Deformation of an Earth Model with a Fluid Core , 1974 .

[4]  Z. Alterman,et al.  Oscillations of the earth , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  W. M. Kaula Tidal dissipation by solid friction and the resulting orbital evolution , 1964 .

[6]  William H. Press,et al.  Numerical recipes in C , 2002 .

[7]  J. Poirier,et al.  Tidal dissipation in small viscoelastic ice moons: The case of Enceladus , 1983 .

[8]  David G. Vaughan,et al.  Tidal flexure at ice shelf margins , 1995 .

[9]  J. D. Anderson,et al.  Gravitational constraints on the internal structure of Ganymede , 1996, Nature.

[10]  Steven Peter Joy,et al.  The magnetic field and magnetosphere of Ganymede , 1997 .

[11]  M. Ross,et al.  Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io , 1988 .

[12]  Detlef Wolf,et al.  Lamé's problem of gravitational viscoelasticity: the isochemical, incompressible planet , 1994 .

[13]  David M. Cole,et al.  The cyclic loading of saline ice , 1995 .

[14]  M. Kivelson,et al.  The Permanent and Inductive Magnetic Moments of Ganymede , 2002 .

[15]  D. J. Southwood,et al.  Discovery of Ganymede's magnetic field by the Galileo spacecraft , 1996, Nature.

[16]  David E. Smith,et al.  Seasonal Variations of Snow Depth on Mars , 2001, Science.

[17]  J. Anderson,et al.  The magnetic field and internal structure of Ganymede , 1996, Nature.

[18]  J. Anderson,et al.  Shape, Mean Radius, Gravity Field, and Interior Structure of Callisto , 2001 .

[19]  J. Head,et al.  Geology and mapping of dark terrain on Ganymede and implications for grooved terrain formation , 2000 .

[20]  Yoaz Bar-Sever,et al.  Probing Europa's hidden ocean from tidal effects on orbital dynamics , 2001 .

[21]  C. Russell,et al.  Absence of an internal magnetic field at Callisto , 1997, Nature.

[22]  G. Schubert,et al.  The Tidal Response of Europa , 2000 .

[23]  Ronald Greeley,et al.  Galileo views of the geology of Callisto , 2000 .

[24]  M. Kivelson,et al.  Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations , 2000 .