Quantum Energy Landscape and VQA Optimization

We study the effects of entanglement and control parameters on the energy landscape and optimization performance of the variational quantum circuit. Through a systematic analysis of the Hessian spectrum, we characterize the local geometry of the energy landscape at a random point and along an optimization trajectory. We argue that decreasing the entangling capability and increasing the number of circuit parameters have the same qualitative effect on the Hessian eigenspectrum. Both the low-entangling capability and the abundance of control parameters increase the curvature of non-flat directions, contributing to the efficient search of area-law entangled ground states as to the optimization accuracy and the convergence speed.

[1]  B. Collins,et al.  Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group , 2004, math-ph/0402073.

[2]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[3]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[4]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[5]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[6]  Yann LeCun,et al.  Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond , 2016, 1611.07476.

[7]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[8]  Ethan Dyer,et al.  Gradient Descent Happens in a Tiny Subspace , 2018, ArXiv.

[9]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[10]  Shankar Krishnan,et al.  An Investigation into Neural Net Optimization via Hessian Eigenvalue Density , 2019, ICML.

[11]  Surya Ganguli,et al.  Emergent properties of the local geometry of neural loss landscapes , 2019, ArXiv.

[12]  Peter D. Johnson,et al.  Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.

[13]  M. Cerezo,et al.  Optimizing parametrized quantum circuits via noise-induced breaking of symmetries , 2020, ArXiv.

[14]  Xiao Yuan,et al.  Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation , 2020, Journal of the Physical Society of Japan.

[15]  Patrick J. Coles,et al.  Impact of Barren Plateaus on the Hessian and Higher Order Derivatives. , 2020 .

[16]  Christopher J. Wood,et al.  Measurement Error Mitigation for Variational Quantum Algorithms , 2020, 2010.08520.

[17]  Joonho Kim,et al.  Universal Effectiveness of High-Depth Circuits in Variational Eigenproblems , 2020, ArXiv.

[18]  N. J. S. Loft,et al.  Reducing the Amount of Single‐Qubit Rotations in VQE and Related Algorithms , 2020, Advanced Quantum Technologies.

[19]  Patrick Huembeli,et al.  Characterizing the loss landscape of variational quantum circuits , 2020, Quantum Science and Technology.

[20]  David Von Dollen,et al.  TensorFlow Quantum: A Software Framework for Quantum Machine Learning , 2020, ArXiv.

[21]  Mikhail Belkin,et al.  Loss landscapes and optimization in over-parameterized non-linear systems and neural networks , 2020, 2003.00307.

[22]  Chenfeng Cao,et al.  Simulating noisy variational quantum eigensolver with local noise models , 2020, Quantum Eng..

[23]  Karl Jansen,et al.  Dimensional Expressivity Analysis of Parametric Quantum Circuits , 2020, Quantum.

[24]  Koen Bertels,et al.  Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability , 2020, Quantum Machine Intelligence.

[25]  Yaron Oz,et al.  Entanglement Diagnostics for Efficient Quantum Computation , 2021, ArXiv.

[26]  Surya Ganguli,et al.  Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics , 2020, ICLR.

[27]  Nathan Wiebe,et al.  Entanglement Induced Barren Plateaus , 2020, PRX Quantum.

[28]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[29]  M. Cerezo,et al.  Equivalence of quantum barren plateaus to cost concentration and narrow gorges , 2021, ArXiv.

[30]  Patrick J. Coles,et al.  Connecting ansatz expressibility to gradient magnitudes and barren plateaus , 2021, PRX Quantum.