On combinatorial optimization problems on matroids with uncertain weights

In this paper the combinatorial optimization problem on weighted matroid is considered. It is assumed that the weights in the problem are ill-known and they are modeled as fuzzy intervals. The optimality of solutions and the optimality of elements are characterized. This characterization is performed in the setting of possibility theory. A method of choosing a solution under uncertainty is also proposed.

[1]  Pawel Zielinski,et al.  Critical path analysis in the network with fuzzy activity times , 2001, Fuzzy Sets Syst..

[2]  Adam Kasperski,et al.  An approximation algorithm for interval data minmax regret combinatorial optimization problems , 2006, Inf. Process. Lett..

[3]  Igor Averbakh,et al.  On the complexity of a class of combinatorial optimization problems with uncertainty , 2001, Math. Program..

[4]  Pascal Van Hentenryck,et al.  A Constraint Satisfaction Approach to the Robust Spanning Tree Problem with Interval Data , 2002, UAI.

[5]  Didier Dubois,et al.  Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge , 2003, Eur. J. Oper. Res..

[6]  Hande Yaman,et al.  The robust spanning tree problem with interval data , 2001, Oper. Res. Lett..

[7]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[8]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[9]  H. Whitney On the Abstract Properties of Linear Dependence , 1935 .

[10]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[11]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[12]  Didier Dubois,et al.  Interval Analysis in Scheduling , 2005, CP.

[13]  Igor Averbakh,et al.  Interval data minmax regret network optimization problems , 2004, Discret. Appl. Math..

[14]  SotskoP,et al.  Some concepts of stability analysis in combinatorial optimization , 2003 .

[15]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[16]  Adam Kasperski,et al.  Possible and necessary optimality of solutions in the single machine scheduling problem with fuzzy parameters , 2004, Fuzzy Sets Syst..

[17]  Didier Dubois,et al.  Fuzzy constraints in job-shop scheduling , 1995, J. Intell. Manuf..

[18]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[19]  Shinkoh Okada,et al.  Fuzzy shortest path problems incorporating interactivity among paths , 2004, Fuzzy Sets Syst..

[20]  Pawel Zielinski,et al.  The computational complexity of the criticality problems in a network with interval activity times , 2002, Eur. J. Oper. Res..

[21]  Eduardo Conde,et al.  An improved algorithm for selecting p items with uncertain returns according to the minmax-regret criterion , 2004, Math. Program..

[22]  James G. Oxley,et al.  Matroid theory , 1992 .