Small Regular Graphs of Girth 7
暂无分享,去创建一个
[1] Vito Napolitano,et al. A family of regular graphs of girth 5 , 2008, Discret. Math..
[2] Brendan D. McKay,et al. The Smallest Cubic Graphs of Girth Nine , 1995, Combinatorics, Probability and Computing.
[3] Camino Balbuena,et al. On the connectivity of cages with girth five, six and eight , 2007, Discret. Math..
[4] Geoffrey Exoo. A Simple Method for Constructing Small Cubic Graphs of Girths 14, 15, and 16 , 1996, Electron. J. Comb..
[5] Vito Napolitano,et al. Íëìêêääëááae Âçíêaeaeä Ç Çååáaeaeìçêááë Îóðùññ ¿½´¾¼¼¼µ¸è× ½½½ß¾¼¼ , 2022 .
[6] Camino Balbuena,et al. Finding small regular graphs of girths 6, 8 and 12 as subgraphs of cages , 2010, Discret. Math..
[7] Stanley E. Payne,et al. Affine representations of generalized quadrangles , 1970 .
[8] W. T. Tutte. A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] J. A. Bondy,et al. Graph Theory , 2008, Graduate Texts in Mathematics.
[10] Felix Lazebnik,et al. Explicit Construction of Graphs with an Arbitrary Large Girth and of Large Size , 1995, Discret. Appl. Math..
[11] M. O'Keefe,et al. The smallest graph of girth 6 and valency 7 , 1981, J. Graph Theory.
[12] Camino Balbuena,et al. A Construction of Small (q-1)-Regular Graphs of Girth 8 , 2015, Electron. J. Comb..
[13] Camino Balbuena,et al. A construction of small regular bipartite graphs of girth 8 , 2009 .
[14] Camino Balbuena,et al. Families of small regular graphs of girth 5 , 2011, Discret. Math..
[15] Felix Lazebnik,et al. New upper bounds on the order of cages , 1996, Electron. J. Comb..
[16] Camino Balbuena,et al. Incidence Matrices of Projective Planes and of Some Regular Bipartite Graphs of Girth 6 with Few Vertices , 2008, SIAM J. Discret. Math..
[17] Markus Meringer,et al. Fast generation of regular graphs and construction of cages , 1999, J. Graph Theory.
[18] Walter Feit,et al. The nonexistence of certain generalized polygons , 1964 .
[19] Dragan Marusic,et al. The 10-cages and derived configurations , 2004, Discret. Math..
[20] V. A. Ustimenko,et al. A linear interpretation of the flag geometries of Chevalley groups , 1990 .
[21] G. Exoo,et al. Dynamic Cage Survey , 2011 .
[22] Derek Allan Holton,et al. The Petersen graph , 1993, Australian mathematical society lecture series.
[23] András Gács,et al. On geometric constructions of (k, g)-graphs , 2008, Contributions Discret. Math..
[24] Pak-Ken Wong,et al. Cages - a survey , 1982, J. Graph Theory.
[25] Camino Balbuena,et al. Constructions of small regular bipartite graphs of girth 6 , 2011, Networks.
[26] E. Bannai,et al. On finite Moore graphs , 1973 .
[27] H. Sachs,et al. Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .
[28] Norman Biggs,et al. Constructions for Cubic Graphs with Large Girth , 1998, Electron. J. Comb..
[29] C. Balbuena,et al. A formulation of a (q+1,8)-cage , 2015, 1501.02448.
[30] Norman Biggs. Algebraic Graph Theory: Index , 1974 .
[31] Jacques Tits,et al. Sur la trialité et certains groupes qui s’en déduisent , 1959 .
[32] J. Thas,et al. Finite Generalized Quadrangles , 2009 .
[33] C. T. Benson. Minimal Regular Graphs of Girths Eight and Twelve , 1966, Canadian Journal of Mathematics.
[34] R. M. Damerell. On Moore graphs , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.