Water availability creates global thresholds in multidimensional soil biodiversity and functions

[1]  Aaron C. Greenville,et al.  Grazing and ecosystem service delivery in global drylands , 2022, Science.

[2]  S. Mamet,et al.  Global hotspots for soil nature conservation , 2022, Nature.

[3]  R. Zomer,et al.  Version 3 of the Global Aridity Index and Potential Evapotranspiration Database , 2022, Scientific Data.

[4]  M. V. D. van der Heijden,et al.  Phylotype diversity within soil fungal functional groups drives ecosystem stability , 2022, Nature Ecology & Evolution.

[5]  B. Singh,et al.  Temperature thresholds drive the global distribution of soil fungal decomposers , 2022, Global change biology.

[6]  Davorka K. Hackenberger,et al.  Global data on earthworm abundance, biomass, diversity and corresponding environmental properties , 2021, Scientific Data.

[7]  B. Singh,et al.  Global diversity and ecological drivers of lichenized soil fungi. , 2021, The New phytologist.

[8]  R. Solé,et al.  Ecological mechanisms underlying aridity thresholds in global drylands , 2021, Functional Ecology.

[9]  M. Mack,et al.  The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization , 2021, The ISME Journal.

[10]  P. Blanken,et al.  Temperature thresholds of ecosystem respiration at a global scale , 2021, Nature Ecology & Evolution.

[11]  M. Delgado‐Baquerizo,et al.  Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes , 2021, The ISME Journal.

[12]  Yunpeng Liu,et al.  Specialized metabolic functions of keystone taxa sustain soil microbiome stability , 2021, Microbiome.

[13]  Q. Shen,et al.  Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt , 2020, The ISME Journal.

[14]  A. Mishra,et al.  Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation , 2020, Nature Communications.

[15]  Yoshihide Wada,et al.  Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation , 2020, Nature Communications.

[16]  Yong-guan Zhu,et al.  Space Is More Important than Season when Shaping Soil Microbial Communities at a Large Spatial Scale , 2020, mSystems.

[17]  C. Guerra,et al.  The proportion of soil-borne pathogens increases with warming at the global scale , 2020, Nature Climate Change.

[18]  R. Solé,et al.  Global ecosystem thresholds driven by aridity , 2020, Science.

[19]  S. Reed,et al.  Multiple elements of soil biodiversity drive ecosystem functions across biomes , 2020, Nature Ecology & Evolution.

[20]  A. Heintz‐Buschart,et al.  Blind spots in global soil biodiversity and ecosystem function research , 2019, Nature Communications.

[21]  J. Lehmann,et al.  Quantitative assessment of microbial necromass contribution to soil organic matter , 2019, Global change biology.

[22]  F. Hagedorn,et al.  Above- and belowground linkages shape responses of mountain vegetation to climate change , 2019, Science.

[23]  Diana H. Wall,et al.  Soil nematode abundance and functional group composition at a global scale , 2019, Nature.

[24]  S. Reed,et al.  Changes in belowground biodiversity during ecosystem development , 2019, Proceedings of the National Academy of Sciences.

[25]  L. Hedin,et al.  Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling , 2019, Nature Ecology & Evolution.

[26]  M. Bradford,et al.  Soil microbial respiration adapts to ambient temperature in global drylands , 2018, Nature Ecology & Evolution.

[27]  M. Rillig,et al.  How Soil Biota Drive Ecosystem Stability. , 2018, Trends in plant science.

[28]  Marta A. Jarzyna,et al.  Taxonomic and functional diversity change is scale dependent , 2018, Nature Communications.

[29]  S. Adl,et al.  Soil protists: a fertile frontier in soil biology research. , 2018, FEMS microbiology reviews.

[30]  M. Keiluweit,et al.  Anoxic microsites in upland soils dominantly controlled by clay content , 2018 .

[31]  W. Shen,et al.  Diversity and co-occurrence network of soil fungi are more responsive than those of bacteria to shifts in precipitation seasonality in a subtropical forest , 2017 .

[32]  R. B. Jackson,et al.  The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls , 2017 .

[33]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[34]  D. Horne,et al.  The available water holding capacity of soils under pasture , 2016 .

[35]  L. Deeks,et al.  On the origin of carbon dioxide released from rewetted soils , 2016, Soil biology & biochemistry.

[36]  M. Schloter,et al.  Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality , 2016, Nature.

[37]  Ana Cristina Cardoso,et al.  Assessing water ecosystem services for water resource management , 2016 .

[38]  Scott T. Bates,et al.  FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild , 2016 .

[39]  Jianping Huang,et al.  Accelerated dryland expansion under climate change , 2016 .

[40]  W. Ulrich,et al.  Increasing aridity reduces soil microbial diversity and abundance in global drylands , 2015, Proceedings of the National Academy of Sciences.

[41]  William R. Wieder,et al.  Future productivity and carbon storage limited by terrestrial nutrient availability , 2015 .

[42]  K. Treseder,et al.  Fungal Traits That Drive Ecosystem Dynamics on Land , 2015, Microbiology and Molecular Reviews.

[43]  D. Sparks,et al.  Soil and human security in the 21st century , 2015, Science.

[44]  Bart Lievens,et al.  Is there a common water-activity limit for the three domains of life? , 2014, The ISME Journal.

[45]  Richard D. Bardgett,et al.  Belowground biodiversity and ecosystem functioning , 2014, Nature.

[46]  Scott T. Bates,et al.  Biogeographic patterns in below-ground diversity in New York City's Central Park are similar to those observed globally , 2014, Proceedings of the Royal Society B: Biological Sciences.

[47]  Colin W. Bell,et al.  High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities , 2013, Journal of visualized experiments : JoVE.

[48]  F. Maestre,et al.  Decoupling of soil nutrient cycles as a function of aridity in global drylands , 2013, Nature.

[49]  Robert C. Edgar,et al.  UPARSE: highly accurate OTU sequences from microbial amplicon reads , 2013, Nature Methods.

[50]  R. Payne,et al.  Seven Reasons Why Protists Make Useful Bioindicators , 2013 .

[51]  R. Scrosati,et al.  An environmental stress model correctly predicts unimodal trends in overall species richness and diversity along intertidal elevation gradients , 2013, Helgoland Marine Research.

[52]  F. Moyano,et al.  Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models , 2013 .

[53]  Scott T. Bates,et al.  Cross-biome metagenomic analyses of soil microbial communities and their functional attributes , 2012, Proceedings of the National Academy of Sciences.

[54]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[55]  Stéphane Audic,et al.  The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy , 2012, Nucleic Acids Res..

[56]  Xuewen Huang,et al.  Plant Species Richness and Ecosystem Multifunctionality in Global Drylands , 2012, Science.

[57]  D. Manning,et al.  Persistence of soil organic matter as an ecosystem property , 2011, Nature.

[58]  M. Willig Biodiversity and Productivity , 2011, Science.

[59]  S. Allison,et al.  Drivers of bacterial β-diversity depend on spatial scale , 2011, Proceedings of the National Academy of Sciences.

[60]  Robert C. Edgar,et al.  Search and clustering orders of magnitude faster than BLAST , 2010, Bioinform..

[61]  P. Rovira,et al.  Aboveground litter quality changes may drive soil organic carbon increase after shrub encroachment into mountain grasslands , 2010, Plant and Soil.

[62]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[63]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[64]  Jim A. Harris,et al.  Soil Microbial Communities and Restoration Ecology: Facilitators or Followers? , 2009, Science.

[65]  S. Allison,et al.  Stoichiometry of soil enzyme activity at global scale. , 2008, Ecology letters.

[66]  M. Heimann,et al.  Terrestrial ecosystem carbon dynamics and climate feedbacks , 2008, Nature.

[67]  J. Lipiec,et al.  Soil porosity and water infiltration as influenced by tillage methods , 2006 .

[68]  B. Rudolf,et al.  World Map of the Köppen-Geiger climate classification updated , 2006 .

[69]  R. B. Jackson,et al.  The diversity and biogeography of soil bacterial communities. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[70]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[71]  N. Pettorelli,et al.  Using the satellite-derived NDVI to assess ecological responses to environmental change. , 2005, Trends in ecology & evolution.

[72]  M. Tabatabai,et al.  β-Glucosaminidase Activity as an Index of Nitrogen Mineralization in Soils , 2004 .

[73]  D. Wardle,et al.  Ecological Linkages Between Aboveground and Belowground Biota , 2004, Science.

[74]  J. Potts,et al.  A Rapid Microtiter Plate Method To Measure Carbon Dioxide Evolved from Carbon Substrate Amendments so as To Determine the Physiological Profiles of Soil Microbial Communities by Using Whole Soil , 2003, Applied and Environmental Microbiology.

[75]  Jianguo Wu,et al.  Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises , 2002 .

[76]  John W. Doran,et al.  Simplified Method for Soil Particle-Size Determination to Accompany Soil-Quality Analyses , 2001 .

[77]  Ian R. Sanders,et al.  Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity , 1998, Nature.

[78]  G. Marzluf,et al.  Genetic regulation of nitrogen metabolism in the fungi , 1997, Microbiology and molecular biology reviews : MMBR.

[79]  R. Edwards,et al.  Nitrogen control in bacteria. , 1995, Microbiological reviews.

[80]  A. M. Helalia The relation between soil infiltration and effective porosity in different soils , 1993 .

[81]  W. Parton,et al.  Primary Production of the Central Grassland Region of the United States , 1988 .

[82]  I. Hiscock Communities and Ecosystems , 1970, The Yale Journal of Biology and Medicine.

[83]  Peter Filzmoser,et al.  Outlier identification in high dimensions , 2008, Comput. Stat. Data Anal..

[84]  P. Lavellea,et al.  Soil invertebrates and ecosystem services , 2006 .

[85]  Jaap Bloem,et al.  Microbiological methods for assessing soil quality , 2005 .

[86]  Stefan Sperlich,et al.  Generalized Additive Models , 2014 .

[87]  D. Lovejoy,et al.  The Economy of Nature , 1977 .