Coexistence of hexagons and rolls

In this work we introduce a rigorous computational method for finding heteroclinic solutions of a system of two second order differential equations. These solutions correspond to standing waves between rolls and hexagonal patterns of a two-dimensional pattern formation PDE model. After reformulating the problem as a projected boundary value problem (BVP) with boundaries in the stable/unstable manifolds, we compute the local manifolds using the Parameterization Method and solve the BVP using Chebyshev series and the radii polynomial approach. Our results settle a conjecture by Doelman et al. [European J. Appl. Math., 14 (1), 85–110 (2003)] about the coexistence of hexagons and rolls.

[1]  Konstantin Mischaikow,et al.  Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..

[2]  P. Zgliczynski,et al.  Covering relations, cone conditions and the stable manifold theorem , 2009 .

[3]  Marian Gidea,et al.  Covering relations for multidimensional dynamical systems , 2004 .

[4]  L. Ahlfors Complex analysis : an introduction to the theory of analytic functions of one complex variable / Lars V. Ahlfors , 1984 .

[5]  Jean-Philippe Lessard,et al.  Efficient Rigorous Numerics for Higher-Dimensional PDEs via One-Dimensional Estimates , 2013, SIAM J. Numer. Anal..

[6]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[7]  Hongjun Gao,et al.  Asymptotic dynamical difference between the nonlocal and local Swift–Hohenberg models , 1998 .

[8]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[9]  Y. Kuramoto,et al.  Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium , 1976 .

[10]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[11]  Konstantin Mischaikow,et al.  Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..

[12]  G. I. Siv Ashinsky,et al.  Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1988 .

[13]  Ernest Fontich The parameterization method for invariant manifolds , 2008 .

[14]  R. Llave,et al.  The parameterization method for invariant manifolds. I: Manifolds associated to non-resonant subspaces , 2003 .

[15]  Konstantin Mischaikow,et al.  Rigorous A Posteriori Computation of (Un)Stable Manifolds and Connecting Orbits for Analytic Maps , 2013, SIAM J. Appl. Dyn. Syst..

[16]  D. Wilczak,et al.  Heteroclinic Connections Between Periodic Orbits in Planar Restricted Circular Three-Body Problem – A Computer Assisted Proof , 2002, math/0201278.

[17]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[18]  Jean-Philippe Lessard,et al.  Rigorous Numerics for Nonlinear Differential Equations Using Chebyshev Series , 2014, SIAM J. Numer. Anal..

[19]  Piotr Zgliczynski,et al.  A Homoclinic Orbit in a Planar Singular ODE - A Computer Assisted Proof , 2013, SIAM J. Appl. Dyn. Syst..

[20]  J. D. M. James Polynomial approximation of one parameter families of (un)stable manifolds with rigorous computer assisted error bounds , 2015 .

[21]  Alan R. Champneys,et al.  Numerical Computation of Coherent Structures , 2007 .

[22]  Jean-Philippe Lessard,et al.  Chaotic Braided Solutions via Rigorous Numerics: Chaos in the Swift-Hohenberg Equation , 2008, SIAM J. Appl. Dyn. Syst..

[23]  Jean-Philippe Lessard,et al.  Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs , 2010 .

[24]  Piotr Zgliczynski,et al.  C1 Lohner Algorithm , 2002, Found. Comput. Math..

[25]  Devharsh Trivedi,et al.  Overview and Applications , 2015 .

[26]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[27]  Jean-Philippe Lessard,et al.  Computer Assisted Proof of Transverse Saddle-to-Saddle Connecting Orbits for First Order Vector Fields , 2014 .

[28]  Daniel Wilczak The Existence of Shilnikov Homoclinic Orbits in the Michelson System: A Computer Assisted Proof , 2006, Found. Comput. Math..

[29]  R. Llave,et al.  The parameterization method for invariant manifolds III: overview and applications , 2005 .

[30]  Björn Sandstede,et al.  Propagation of hexagonal patterns near onset , 2003, European Journal of Applied Mathematics.

[31]  Konstantin Mischaikow,et al.  Global smooth solution curves using rigorous branch following , 2010, Math. Comput..

[32]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[33]  Daniel Wilczak,et al.  Symmetric Heteroclinic Connections in the Michelson System: A Computer Assisted Proof , 2005, SIAM J. Appl. Dyn. Syst..

[34]  L. Ahlfors Complex Analysis , 1979 .

[35]  R. Canosa,et al.  The parameterization method for invariant manifolds II: regularity with respect to parameters , 2002 .

[36]  G. Sivashinsky Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1977 .