Quantum Computing Circuits and Devices

Editor’s note: As an emerging technology, quantum computing brings unique promises in creating a fundamentally different paradigm of information processing. This article reviews introductory concepts and building blocks—quantum logic gates and memory, i.e., qubits, for quantum computing and depicts the challenges as well as prospects associated with design, test, and fabrication of quantum devices. —Swarup Bhunia, Case Western Reserve University

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Vibhor Singh,et al.  Multi-mode ultra-strong coupling in circuit quantum electrodynamics , 2017, npj Quantum Information.

[3]  Dmitri Maslov,et al.  Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[4]  T. Thorbeck,et al.  Formation of strain-induced quantum dots in gated semiconductor nanostructures , 2014, 1409.3549.

[5]  C. Schwemmer,et al.  Permutationally invariant quantum tomography. , 2010, Physical review letters.

[6]  M. Y. Simmons,et al.  A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[7]  Noson S. Yanofsky,et al.  Quantum Computing for Computer Scientists , 2008 .

[8]  J. P. Dehollain,et al.  Nanoscale broadband transmission lines for spin qubit control , 2012, Nanotechnology.

[9]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[10]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[11]  R. Blatt,et al.  Ion Trap Quantum Computing with Ca+ Ions , 2004, Quantum Inf. Process..

[12]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[13]  Shantanu Debnath,et al.  A Programmable Five Qubit Quantum Computer Using Trapped Atomic Ions , 2017 .

[14]  Boris B. Blinov,et al.  Quantum Computing with Trapped Ion Hyperfine Qubits , 2004, Quantum Inf. Process..

[15]  Himanshu Thapliyal,et al.  Mapping of Subtractor and Adder-Subtractor Circuits on Reversible Quantum Gates , 2016, Trans. Comput. Sci..

[16]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[17]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[18]  B. Hensen,et al.  Decoherence, the measurement problem, and interpretations of quantum mechanics , 2010 .

[19]  Peter Maunz,et al.  Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography , 2016, Nature Communications.

[20]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[21]  Michele Mosca,et al.  An algorithm for the T-count , 2013, Quantum Inf. Comput..

[22]  Travis S. Humble,et al.  High-Performance Computing with Quantum Processing Units , 2015, ACM J. Emerg. Technol. Comput. Syst..

[23]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[24]  E Knill,et al.  Randomized benchmarking of multiqubit gates. , 2012, Physical review letters.

[25]  Michael J. Biercuk,et al.  Effect of noise correlations on randomized benchmarking , 2015, 1504.05307.

[26]  F. Nori,et al.  Strong coupling of a spin qubit to a superconducting stripline cavity , 2012, 1204.4732.

[27]  C. Monroe,et al.  Co-designing a scalable quantum computer with trapped atomic ions , 2016, npj Quantum Information.

[28]  W. Marsden I and J , 2012 .

[29]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[30]  Himanshu Thapliyal,et al.  T-count Optimized Design of Quantum Integer Multiplication , 2017, ArXiv.

[31]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[32]  G. Feher,et al.  Electron Spin Resonance Experiments on Donors in Silicon. I. Electronic Structure of Donors by the Electron Nuclear Double Resonance Technique , 1959 .

[33]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[34]  V. Scarani,et al.  Quantum cloning , 2005, quant-ph/0511088.

[35]  Jian-Wei Pan,et al.  10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. , 2017, Physical review letters.

[36]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[37]  Gerhard Klimeck,et al.  Silicon quantum processor with robust long-distance qubit couplings , 2015, Nature Communications.

[38]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[39]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[40]  C. Slichter Principles of magnetic resonance , 1963 .

[41]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[42]  Travis S. Humble,et al.  Instruction Set Architectures for Quantum Processing Units , 2017, ISC Workshops.

[43]  N. Kalhor,et al.  Strong spin-photon coupling in silicon , 2017, Science.

[44]  D. Poulin,et al.  Practical learning method for multi-scale entangled states , 2012, 1204.0792.

[45]  Vinay Ambegaokar,et al.  Tunneling between superconductors , 1963 .

[46]  David Poulin,et al.  Practical characterization of quantum devices without tomography. , 2011, Physical review letters.

[47]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[48]  Xuedong Hu,et al.  Exchange in silicon-based quantum computer architecture. , 2002, Physical review letters.

[49]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[50]  F. K. Wilhelm,et al.  Complete randomized benchmarking protocol accounting for leakage errors , 2015, 1505.00580.

[51]  C. Tahan,et al.  Barrier versus tilt exchange gate operations in spin-based quantum computing , 2017, 1711.00595.

[52]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[53]  Michelle Y. Simmons,et al.  A surface code quantum computer in silicon , 2015, Science Advances.

[54]  Mathias Soeken,et al.  Programming quantum computers using design automation , 2018, 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[55]  N. Ranganathan,et al.  Design of efficient reversible logic-based binary and BCD adder circuits , 2013, JETC.

[56]  Jun Li,et al.  Enhancing quantum control by bootstrapping a quantum processor of 12 qubits , 2017, 1701.01198.

[57]  Gerhard Klimeck,et al.  Electrically controlling single-spin qubits in a continuous microwave field , 2015, Science Advances.

[58]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[59]  Travis S. Humble,et al.  Quantum Accelerators for High-Performance Computing Systems , 2017, 2017 IEEE International Conference on Rebooting Computing (ICRC).

[60]  Nathan Wiebe,et al.  Robust online Hamiltonian learning , 2012, TQC.

[61]  Gerhard Klimeck,et al.  Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting , 2013, Nature Communications.

[62]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[63]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[64]  N. Houlsby,et al.  Adaptive Bayesian quantum tomography , 2011, 1107.0895.

[65]  P.T.H. Fisk,et al.  Accurate measurement of the 12.6 GHz "clock" transition in trapped /sup 171/Yb/sup +/ ions , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[66]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[67]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[68]  M. Veldhorst,et al.  Spin-orbit coupling and operation of multivalley spin qubits , 2015, 1505.01213.

[69]  Christopher Ferrie,et al.  Accelerated randomized benchmarking , 2014, 1404.5275.

[70]  Zhengfeng Ji,et al.  Uniqueness of quantum states compatible with given measurement results , 2012, 1212.3503.

[71]  Kenneth Rudinger,et al.  What Randomized Benchmarking Actually Measures. , 2017, Physical review letters.

[72]  Yi-Kai Liu,et al.  Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.

[73]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[74]  Niraj K. Jha,et al.  QLib: Quantum module library , 2014, ACM J. Emerg. Technol. Comput. Syst..

[75]  Aephraim M. Steinberg,et al.  Adaptive quantum state tomography improves accuracy quadratically. , 2013, Physical review letters.

[76]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[77]  Erik Nielsen,et al.  Optimization of a solid-state electron spin qubit using gate set tomography , 2016, 1606.02856.

[78]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[79]  M Steffen,et al.  Characterization of addressability by simultaneous randomized benchmarking. , 2012, Physical review letters.

[80]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[81]  Kae Nemoto,et al.  Requirements for fault-tolerant factoring on an atom-optics quantum computer , 2012, Nature Communications.

[82]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[83]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[84]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[85]  J. Gambetta,et al.  Bulk and surface loss in superconducting transmon qubits , 2015, 1509.03859.

[86]  Peter Maunz,et al.  Single qubit manipulation in a microfabricated surface electrode ion trap , 2013, 1306.1269.

[87]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[88]  Steven M. Girvin,et al.  Circuit QED: Superconducting Qubits Coupled to Microwave Photons , 2015 .

[89]  J. Verduijn Silicon Quantum Electronics , 2012 .

[90]  Sy-Yen Kuo,et al.  Quantum Boolean Circuits are 1-Testable , 2008, IEEE Transactions on Nanotechnology.

[91]  Daniel A. Lidar,et al.  Consistency of the Adiabatic Theorem , 2004, Quantum Inf. Process..

[92]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[93]  C. Macchiavello,et al.  Quantum channel detection , 2013 .

[94]  Andrea Morello,et al.  Electron spin decoherence in isotope-enriched silicon. , 2010, Physical review letters.

[95]  Dmitri Maslov,et al.  Automated optimization of large quantum circuits with continuous parameters , 2017, npj Quantum Information.

[96]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[97]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[98]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[99]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[100]  J. P. Dehollain,et al.  A dressed spin qubit in silicon. , 2016, Nature nanotechnology.

[101]  Shelby Kimmel,et al.  Robust Extraction of Tomographic Information via Randomized Benchmarking , 2013, 1306.2348.

[102]  Stuart Hadfield,et al.  Quantum algorithms and circuits for scientific computing , 2015, Quantum Inf. Comput..

[103]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[104]  S. Sarma,et al.  Statistical exchange-coupling errors and the practicality of scalable silicon donor qubits , 2016, 1611.02808.

[105]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[106]  Mark A. Eriksson,et al.  Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet , 2016, Proceedings of the National Academy of Sciences.

[107]  J. J. Sakurai,et al.  Modern Quantum Mechanics, Revised Edition , 1995 .

[108]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[109]  John P. Hayes,et al.  Fault testing for reversible circuits , 2003, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[110]  Dmitri Maslov,et al.  Optimal and asymptotically optimal NCT reversible circuits by the gate types , 2016, Quantum Inf. Comput..

[111]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[112]  J. Rowell TUNNELING BETWEEN SUPERCONDUCTORS , 1964 .

[113]  D. McMahon Adiabatic Quantum Computation , 2008 .

[114]  Robert Wille,et al.  One-Pass Design of Reversible Circuits: Combining Embedding and Synthesis for Reversible Logic , 2018, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[115]  J. R. Petta,et al.  Strong coupling of a single electron in silicon to a microwave photon , 2017, Science.

[116]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[117]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[118]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[119]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[120]  Jay M. Gambetta,et al.  Self-Consistent Quantum Process Tomography , 2012, 1211.0322.

[121]  E. Knill Fault-Tolerant Postselected Quantum Computation: Schemes , 2004, quant-ph/0402171.

[122]  Andrew S. Dzurak,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.