Quasi-harmonic Bézier approximation of minimal surfaces for finding forms of structural membranes

A novel form-finding approach to construct minimal surface from a given boundary by quasi-harmonic Bezier approximation.Quasi-harmonic mask method to generate approximate minimal surfaces by solving a sparse linear system.A framework to construct multi-patch quasi-harmonic Bezier approximation from N-sided boundary curves. Numerical approximation of minimal surface is an important problem in form-finding of structural membranes. In this paper, we present a novel approach to construct minimal surface from a given boundary by quasi-harmonic Bezier approximation. A new energy functional called quasi-harmonic energy functional is proposed as the objective function to obtain the quasi-harmonic Bezier surface from given boundaries. The quasi-harmonic mask is also proposed to generate approximate minimal surfaces by solving a sparse linear system. We propose a framework to construct multi-patch quasi-harmonic Bezier approximation from N-sided boundary curves. The efficiency of the proposed methods is illustrated by several modeling examples.

[1]  R. Osserman A survey of minimal surfaces , 1969 .

[2]  Hassan Ugail,et al.  On harmonic and biharmonic Bézier surfaces , 2004, Comput. Aided Geom. Des..

[3]  Salvatore Torquato,et al.  A variational level set approach for surface area minimization of triply-periodic surfaces , 2007, J. Comput. Phys..

[4]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[5]  Masaaki Shimasaki,et al.  Numerical solution of Plateau’s problem by a finite element method , 1974 .

[6]  Roland Wüchner,et al.  Optimal shapes of mechanically motivated surfaces , 2010 .

[7]  Charlie C. L. Wang,et al.  Computing Length-Preserved Free Boundary for Quasi-Developable Mesh Segmentation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[8]  Einar M. Rønquist,et al.  High order numerical approximation of minimal surfaces , 2011, J. Comput. Phys..

[9]  Guozhao Wang,et al.  Parametric Polynomial Minimal Surfaces of Degree Six with Isothermal Parameter , 2008, GMP.

[10]  Ren-Hong Wang,et al.  Designing approximation minimal parametric surfaces with geodesics , 2013 .

[11]  Hugues Talbot,et al.  Globally minimal surfaces by continuous maximal flows , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Richard M. Christensen,et al.  Mechanics of cellular and other low-density materials , 2000 .

[13]  K. Koohestani,et al.  Nonlinear force density method for the form-finding of minimal surface membrane structures , 2014, Commun. Nonlinear Sci. Numer. Simul..

[14]  Roland Wüchner,et al.  Computational methods for form finding and optimization of shells and membranes , 2005 .

[15]  Ren-hong Wang,et al.  An approximation method based on MRA for the quasi-Plateau problem , 2013 .

[16]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[17]  Ren-hong Wang,et al.  Minimal quasi-Bézier surface☆ , 2012 .

[18]  Guoliang Xu,et al.  Construction of minimal subdivision surface with a given boundary , 2011, Comput. Aided Des..

[19]  Ognian Kassabov,et al.  Transition to canonical principal parameters on minimal surfaces , 2014, Comput. Aided Geom. Des..

[20]  Guillermo Sapiro,et al.  Minimal Surfaces Based Object Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  B. Tabarrok,et al.  Nonlinear analysis of tension structures , 1992 .

[22]  Guozhao Wang,et al.  Quintic parametric polynomial minimal surfaces and their properties , 2010 .

[23]  Qunsheng Peng,et al.  Bézier Surfaces of Minimal Internal Energy , 2005, IMA Conference on the Mathematics of Surfaces.

[24]  Daud Ahmad,et al.  Variational minimization on string-rearrangement surfaces, illustrated by an analysis of the bilinear interpolation , 2012, Appl. Math. Comput..

[25]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[26]  L. Gründig,et al.  Minimal surfaces for finding forms of structural membranes , 1988 .

[27]  Juan Monterde,et al.  Bézier surfaces of minimal area: The Dirichlet approach , 2004, Comput. Aided Geom. Des..

[28]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[29]  Gerald E. Farin,et al.  Discrete Coons patches , 1999, Comput. Aided Geom. Des..

[30]  D. Greenspan,et al.  A contribution to the particle modeling of soap films , 1988 .