The st-bond polytope on series-parallel graphs

The st-bond polytope of a graph is the convex hull of the incidence vectors of its st-bonds, where an st-bond is a minimal st-cut. In this paper, we provide a linear description of the st-bond polytope on series-parallel graphs. We also show that the st-bond polytope is the intersection of the st-cut dominant and the bond polytope.

[1]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .

[2]  A. Schrijver A Course in Combinatorial Optimization , 1990 .

[3]  Gilberto Calvillo,et al.  The Concavity and Intersection Properties for Integral Polyhedra , 1980 .

[4]  Roland Grappe,et al.  Circuit and bond polytopes on series-parallel graphs , 2015, Discret. Optim..

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[7]  Ali Ridha Mahjoub,et al.  On the cut polytope , 1986, Math. Program..

[8]  Michele Barbato,et al.  Lexicographical polytopes , 2018, Discret. Appl. Math..

[9]  W. Sierpinski,et al.  Sur le probléme des courbes gauches en Topologie , 2022 .

[10]  Egon Balas,et al.  On the Dimension of Projected Polyhedra , 1998, Discret. Appl. Math..

[11]  Amit Chakrabarti,et al.  When the cut condition is enough: a complete characterization for multiflow problems in series-parallel networks , 2012, STOC '12.

[12]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[13]  F. Hadlock,et al.  Finding a Maximum Cut of a Planar Graph in Polynomial Time , 1975, SIAM J. Comput..

[14]  Martin Skutella,et al.  On the dominant of the s-t-cut polytope: Vertices, facets, and adjacency , 2009, Math. Program..

[15]  David Eppstein,et al.  Parallel Recognition of Series-Parallel Graphs , 1992, Inf. Comput..

[16]  Jean Baptiste Joseph Fourier,et al.  Oeuvres de Fourier: Solution d'une question particulière du calcul des inégalités , 2013 .

[17]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[18]  R. Duffin Topology of series-parallel networks , 1965 .

[19]  William J. Cook,et al.  Combinatorial optimization , 1997 .