Size-dependent tunneling and optical spectroscopy of CdSe quantum rods.

Photoluminescence excitation spectroscopy and scanning-tunneling spectroscopy are used to study the electronic states in CdSe quantum rods that manifest a transition from a zero-dimensional to a one-dimensional quantum-confined structure. Both optical and tunneling spectra show that the level structure depends primarily on the diameter of the rod and not its length. With increasing diameter, the band gap and the excited state level spacings shift to the red. The level structure was assigned using a multiband effective-mass model, showing a similar dependence on rod dimensions.

[1]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[2]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[3]  U. Banin,et al.  Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes , 2002, Science.

[4]  Sercel,et al.  Polarization dependence of optical absorption and emission in quantum wires. , 1991, Physical review. B, Condensed matter.

[5]  A. Zunger,et al.  Shell-Tunneling Spectroscopy of the Single-Particle Energy Levels of Insulating Quantum Dots , 2001 .

[6]  Norris,et al.  Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. , 1996, Physical review. B, Condensed matter.

[7]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[8]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[9]  U. Banin,et al.  Size-dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory , 1998 .

[10]  Weidong Yang,et al.  Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods , 2001, Science.

[11]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[12]  U Banin,et al.  Imaging and spectroscopy of artificial-atom states in core/shell nanocrystal quantum dots. , 2001, Physical review letters.

[13]  Uri Banin,et al.  Lasing from Semiconductor Quantum Rods in a Cylindrical Microcavity , 2002 .

[14]  A. P. Alivisatos,et al.  Semiempirical Pseudopotential Calculation of Electronic States of CdSe Quantum Rods , 2002 .

[15]  Xiaogang Peng,et al.  Mechanisms of the Shape Evolution of CdSe Nanocrystals , 2001 .

[16]  A. P. Alivisatos,et al.  Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods , 2001 .

[17]  François Hache,et al.  Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions , 1993 .

[18]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[19]  A. Zunger,et al.  Pseudopotential calculations of electron and hole addition spectra of InAs, InP, and Si quantum dots , 2000 .

[20]  U. Banin,et al.  Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots , 1999, Nature.

[21]  Sercel,et al.  Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelope-function approximation. , 1990, Physical review. B, Condensed matter.

[22]  Y. Niquet,et al.  Interpretation and theory of tunneling experiments on single nanostructures , 2002 .