Frontiers in Systems Neuroscience Systems Neuroscience

Gamma-aminobutyric acid immunoreactive feedback neurons of the protocerebral tract are a major component of the honeybee mushroom body. They have been shown to be subject to learning-related plasticity and provide putative inhibitory input to Kenyon cells and the pedunculus extrinsic neuron, PE1. We hypothesize, that learning-related modulation in these neurons is mediated by varying the amount of inhibition provided by feedback neurons. We performed Ca2+ imaging recordings of populations of neurons of the protocerebral-calycal tract (PCT) while the bees were conditioned in an appetitive olfactory paradigm and their behavioral responses were quantified using electromyographic recordings from M17, the muscle which controls the proboscis extension response. The results corroborate findings from electrophysiological studies showing that PCT neurons respond to sucrose and odor stimuli. The odor responses are concentration dependent. Odor and sucrose responses are modulated by repeated stimulus presentations. Furthermore, animals that learned to associate an odor with sucrose reward responded to the repeated presentations of the rewarded odor with less depression than they did to an unrewarded and a control odor.

[1]  R. Menzel,et al.  Neural correlates of odor learning in the honeybee antennal lobe , 2010, The European journal of neuroscience.

[2]  R. Menzel,et al.  In vivo Ca2+ imaging of mushroom body neurons during olfactory learning in the honey bee. , 2009, Journal of visualized experiments : JoVE.

[3]  Ronald L. Davis,et al.  The GABAA Receptor RDL Suppresses the Conditioned Stimulus Pathway for Olfactory Learning , 2009, The Journal of Neuroscience.

[4]  R. Menzel,et al.  Associative and Non-Associative Plasticity in Kenyon Cells of the Honeybee Mushroom Body , 2008, Frontiers in systems neuroscience.

[5]  R. Menzel Insect Minds For Human Minds , 2008 .

[6]  Ronald L. Davis,et al.  GABAA Receptor RDL Inhibits Drosophila Olfactory Associative Learning , 2007, Neuron.

[7]  R. Menzel,et al.  Learning-Related Plasticity in PE1 and Other Mushroom Body-Extrinsic Neurons in the Honeybee Brain , 2007, The Journal of Neuroscience.

[8]  Sebastian Kirschner,et al.  Dual olfactory pathway in the honeybee, Apis mellifera , 2006, The Journal of comparative neurology.

[9]  R. Menzel,et al.  Appetitive odor learning does not change olfactory coding in a subpopulation of honeybee antennal lobe neurons , 2006, Journal of Comparative Physiology A.

[10]  David S Vicario,et al.  Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Menzel,et al.  Neural plasticity of mushroom body-extrinsic neurons in the honeybee brain , 2005, Journal of Experimental Biology.

[12]  R. Menzel,et al.  Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. , 2005, Journal of neurophysiology.

[13]  T. Sejnowski,et al.  Fast Odor Learning Improves Reliability of Odor Responses in the Locust Antennal Lobe , 2005, Neuron.

[14]  Randolf Menzel,et al.  Spontaneous Recovery from Extinction Depends on the Reconsolidation of the Acquisition Memory in an Appetitive Learning Paradigm in the Honeybee (Apis mellifera) , 2005, The Journal of Neuroscience.

[15]  Ronald L. Davis,et al.  Olfactory Learning , 2004, Neuron.

[16]  E. Kandel The Molecular Biology of Memory Storage: A Dialog Between Genes and Synapses , 2004, Bioscience reports.

[17]  U. Homberg Processing of antennal information in extrinsic mushroom body neurons of the bee brain , 1984, Journal of Comparative Physiology A.

[18]  H. Martin Zur Nahorientierung der Biene im Duftfeld Zugleich ein Nachweis für die Osmotropotaxis bei Insekten , 1964, Zeitschrift für vergleichende Physiologie.

[19]  B. Kimmerle,et al.  Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy , 2003, Journal of Comparative Physiology A.

[20]  N. Strausfeld Organization of the honey bee mushroom body: Representation of the calyx within the vertical and gamma lobes , 2002, The Journal of comparative neurology.

[21]  R. Menzel,et al.  Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. , 2002, Journal of Comparative Physiology A.

[22]  L. T. Robertson Memory and the brain. , 2002, Journal of dental education.

[23]  E. Kandel The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses , 2001, Science.

[24]  R. Menzel,et al.  Visualizing mushroom body response to a conditioned odor in honeybees , 2001, Naturwissenschaften.

[25]  Amy A. Kruse,et al.  Development of song responses in the zebra finch caudomedial neostriatum: role of genomic and electrophysiological activities. , 2001, Journal of neurobiology.

[26]  R. Menzel,et al.  GABA‐immunoreactive neurons in the mushroom bodies of the honeybee: An electron microscopic study , 2001, The Journal of comparative neurology.

[27]  R. Menzel,et al.  Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera , 2001, The Journal of comparative neurology.

[28]  S. Chandra,et al.  Quantitative Trait Loci Associated with Reversal Learning and Latent Inhibition in Honeybees (Apis mellifera) , 2001, Behavior genetics.

[29]  N. Strausfeld,et al.  Parallel organization in honey bee mushroom bodies by peptidergic kenyon cells , 2000, The Journal of comparative neurology.

[30]  Heritable variation for latent inhibition and its correlation with reversal learning in honeybees (Apis mellifera). , 2000, Journal of comparative psychology.

[31]  G. Laurent,et al.  Short-term memory in olfactory network dynamics , 1999, Nature.

[32]  B. Grünewald,et al.  Physiological properties and response modulations of mushroom body feedback neurons during olfactory learning in the honeybee, Apis mellifera , 1999, Journal of Comparative Physiology A.

[33]  S. Sachse,et al.  The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code , 1999, The European journal of neuroscience.

[34]  Li Liu,et al.  Context generalization in Drosophila visual learning requires the mushroom bodies , 1999, Nature.

[35]  B. Grünewald,et al.  Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera , 1999, The Journal of comparative neurology.

[36]  R. Menzel,et al.  Associative learning modifies neural representations of odors in the insect brain , 1999, Nature Neuroscience.

[37]  T. Shibuya,et al.  Physiology and morphology of olfactory neurons associating with the protocerebral lobe of the honeybee brain. , 1998, Journal of insect physiology.

[38]  M Heisenberg,et al.  Mushroom bodies suppress locomotor activity in Drosophila melanogaster. , 1998, Learning & memory.

[39]  R. Menzel,et al.  Integrative properties of the Pe1 neuron, a unique mushroom body output neuron. , 1998, Learning & memory.

[40]  Randolf Menzel,et al.  A semi-in-vivo preparation for optical recording of the insect brain , 1997, Journal of Neuroscience Methods.

[41]  R. Menzel,et al.  Representations of odours and odour mixtures visualized in the honeybee brain , 1997, Nature.

[42]  F. Nottebohm,et al.  Quantal Duration of Auditory Memories , 1996, Science.

[43]  R. Menzel,et al.  Honey bees transfer olfactory memories established during flower visits to a proboscis extension paradigm in the laboratory , 1996, Animal Behaviour.

[44]  S J Chew,et al.  A large-capacity memory system that recognizes the calls and songs of individual birds. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  F. Nottebohm,et al.  Decrements in auditory responses to a repeated conspecific song are long-lasting and require two periods of protein synthesis in the songbird forebrain. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[46]  J. Ringo,et al.  Stimulus specific adaptation in excited but not in inhibited cells in inferotemporal cortex of Macaque , 1994, Brain Research.

[47]  M Heisenberg,et al.  Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. , 1994, Science.

[48]  M. Hammer An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees , 1993, Nature.

[49]  R. Menzel,et al.  Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha‐lobe , 1993, The Journal of comparative neurology.

[50]  R. Desimone,et al.  The representation of stimulus familiarity in anterior inferior temporal cortex. , 1993, Journal of neurophysiology.

[51]  J. Mauelshagen,et al.  Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. , 1993, Journal of neurophysiology.

[52]  G. Bicker,et al.  Habituation of an appetitive reflex in the honeybee. , 1992, Journal of neurophysiology.

[53]  R. Desimone,et al.  A neural mechanism for working and recognition memory in inferior temporal cortex. , 1991, Science.

[54]  V. Rehder Quantification of the honeybee's proboscis reflex by electromyographic recordings , 1987 .

[55]  W. Gronenberg Anatomical and physiological properties of feedback neurons of the mushroom bodies in the bee brain. , 1987, Experimental biology.

[56]  M. Bitterman,et al.  Latent inhibition in honeybees , 1986 .

[57]  W. Gronenberg Physiological and anatomical properties of optical input-fibres to the mushroom body in the bee brain , 1986 .

[58]  T. Kingan,et al.  Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity , 1985, Brain Research.

[59]  M. Bitterman,et al.  Classical conditioning of proboscis extension in honeybees (Apis mellifera). , 1983, Journal of comparative psychology.

[60]  P. Mobbs The Brain of the Honeybee Apis Mellifera. I. The Connections and Spatial Organization of the Mushroom Bodies , 1982 .

[61]  R. Menzel,et al.  Localization of short‐term memory in the brain of the bee, Apis mellifera , 1980 .

[62]  M. Blum,et al.  Chemistry of the Sting Apparatus of the Worker Honeybee , 1978 .

[63]  L. Barton Browne,et al.  Experimental Analysis of Insect Behaviour , 1974, Springer Berlin Heidelberg.

[64]  F. Weinberg,et al.  Optical Methods , 2020, Nature.

[65]  F. Huber CENTRAL NERVOUS CONTROL OF SOUND PRODUCTION IN CRICKETS AND SOME SPECULATIONS ON ITS EVOLUTION , 1962 .

[66]  Masutaro Kuwabara Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica (Mit 1 Textabbildung) , 1957 .