Jamming bacterial communication: New approaches for the treatment of infectious diseases

The global rise of anti‐microbial resistance, combined with the rapid rate of microbial evolution, and the slower development of novel antibiotics, underscores the urgent need for innovative therapeutics. We are facing a post‐antibiotic era with a decreased armamentarium to combat infectious diseases. Development of novel drugs will rely on basic research aimed to increase our understanding of bacterial pathogenesis and the inter‐cellular chemical signalling among bacterial cells. Such basic science, when combined with contemporary drug discovery technologies, may be translated into therapeutic applications to combat bacterial infections. In this review, we discuss many strategies aimed to interfere with bacterial cell‐to‐cell signalling via the quorum‐sensing (QS) pathway to inhibit bacterial virulence and/or the development of microbial communities (known as biofilms), which are refractory to antibiotic treatment. QS antagonists should be viewed as blockers of pathogenicity rather than as anti‐microbials and because QS is not involved in bacterial growth, inhibition of QS should not yield a strong selective pressure for development of resistance. QS inhibitors (QSIs) hold great expectations and we look forward to their application in fighting bacterial infections.

[1]  C. Harwood,et al.  Toxin gene expression by shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. , 2000, Emerging infectious diseases.

[2]  Jan-Ulrich Kreft,et al.  Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms. , 2006, FEMS microbiology letters.

[3]  W. Wahli,et al.  Peroxisome Proliferator-Activated Receptors Mediate Host Cell Proinflammatory Responses to Pseudomonas aeruginosa Autoinducer , 2008, Journal of bacteriology.

[4]  B. Iglewski,et al.  Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes , 1997, Journal of bacteriology.

[5]  T. Muir,et al.  Molecular Mechanisms of agr Quorum Sensing in Virulent Staphylococci , 2007, Chembiochem : a European journal of chemical biology.

[6]  S. Rice,et al.  Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis. , 2008, Microbiology.

[7]  Philip S. Stewart,et al.  Contributions of Antibiotic Penetration, Oxygen Limitation, and Low Metabolic Activity to Tolerance of Pseudomonas aeruginosa Biofilms to Ciprofloxacin and Tobramycin , 2003, Antimicrobial Agents and Chemotherapy.

[8]  A. Carmody,et al.  Specificity grouping of the accessory gene regulator quorum-sensing system of Staphylococcus epidermidis is linked to infection , 2004, Archives of Microbiology.

[9]  Hiroaki Suga,et al.  Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. , 2003, Chemistry & biology.

[10]  E. Pesci,et al.  Regulation of Pseudomonas Quinolone Signal Synthesis in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[11]  A. Ghahary,et al.  Potential application of gaseous nitric oxide as a topical antimicrobial agent. , 2006, Nitric oxide : biology and chemistry.

[12]  M. Hirshberg,et al.  Regulation of Staphylococcus aureus Pathogenesis via Target of RNAIII-activating Protein (TRAP)* , 2001, The Journal of Biological Chemistry.

[13]  Roger E. Bumgarner,et al.  Gene expression in Pseudomonas aeruginosa biofilms , 2001, Nature.

[14]  T. A. Springer,et al.  IL-8 Production in Human Lung Fibroblasts and Epithelial Cells Activated by the Pseudomonas Autoinducer N-3-Oxododecanoyl Homoserine Lactone Is Transcriptionally Regulated by NF-κB and Activator Protein-21 , 2001, The Journal of Immunology.

[15]  S. Zimmermann,et al.  The quorum-sensing molecule N-3-oxododecanoyl homoserine lactone (3OC12-HSL) enhances the host defence by activating human polymorphonuclear neutrophils (PMN) , 2007, Analytical and bioanalytical chemistry.

[16]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[17]  J. Mangiafico,et al.  Microagglutination test for detecting and measuring serum agglutinins of Francisella tularensis. , 1974, Applied microbiology.

[18]  M. Waldor,et al.  Role for a Phage Promoter in Shiga Toxin 2 Expression from a Pathogenic Escherichia coliStrain , 2001, Journal of bacteriology.

[19]  C. Harwood,et al.  Induction of type 2 Shiga toxin synthesis in Escherichia coli 0157 by 4-quinolones , 1999, The Lancet.

[20]  R. Novick,et al.  Quorum sensing in staphylococci. , 2008, Annual review of genetics.

[21]  W. Chan,et al.  Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. , 2004, Journal of medicinal chemistry.

[22]  Harry L. T. Mobley,et al.  Pathogenic Escherichia coli , 2004, Nature Reviews Microbiology.

[23]  Michael J. MacCoss,et al.  Aminoglycoside antibiotics induce bacterial biofilm formation , 2005, Nature.

[24]  R. Weinstein Controlling antimicrobial resistance in hospitals: infection control and use of antibiotics. , 2001, Emerging infectious diseases.

[25]  M. Pallen,et al.  The rpoS-dependent starvation-stress response locus stiA encodes a nitrate reductase (narZYWV) required for carbon-starvation-inducible thermotolerance and acid tolerance in Salmonella typhimurium. , 1999, Microbiology.

[26]  O. Serichantalergs,et al.  Actin accumulation associated with clustered and localized adherence in Escherichia coli isolated from patients with diarrhea , 1994, Infection and immunity.

[27]  E. Greenberg,et al.  The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent , 2008, Proceedings of the National Academy of Sciences.

[28]  V. Sperandio,et al.  The QseC sensor kinase: A bacterial adrenergic receptor , 2006, Proceedings of the National Academy of Sciences.

[29]  H. Gold,et al.  Antimicrobial resistance to linezolid. , 2004, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[30]  R. Novick Autoinduction and signal transduction in the regulation of staphylococcal virulence , 2003, Molecular microbiology.

[31]  A. Giacometti,et al.  Suppression of Biofilm Related, Device-Associated Infections by Staphylococcal Quorum Sensing Inhibitors , 2008, The International journal of artificial organs.

[32]  M. Schoenfisch,et al.  Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. , 2009, Biomaterials.

[33]  Michael Roth,et al.  Targeting QseC Signaling and Virulence for Antibiotic Development , 2008, Science.

[34]  S. Wuertz,et al.  Effect of flow regime on the architecture of a Pseudomonas fluorescens biofilm. , 2002, Biotechnology and bioengineering.

[35]  J. Kimpen,et al.  Maintenance Azithromycin Treatment in Pediatric Patients With Cystic Fibrosis: Long-Term Outcomes Related to Macrolide Resistance and Pulmonary Function , 2007, The Pediatric infectious disease journal.

[36]  M Welch,et al.  Biofilms and type III secretion are not mutually exclusive in Pseudomonas aeruginosa. , 2009, Microbiology.

[37]  E. Greenberg,et al.  Chelator-Induced Dispersal and Killing of Pseudomonas aeruginosa Cells in a Biofilm , 2006, Applied and Environmental Microbiology.

[38]  J. Musser,et al.  The agr Radiation: an Early Event in the Evolution of Staphylococci , 2005, Journal of bacteriology.

[39]  E. Greenberg,et al.  Influence of Quorum Sensing and Iron on Twitching Motility and Biofilm Formation in Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[40]  V. Sperandio,et al.  Quorum sensing in Escherichia coli and Salmonella. , 2006, International journal of medical microbiology : IJMM.

[41]  D. Ohman,et al.  Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family , 1995, Journal of bacteriology.

[42]  H. Gresham,et al.  Apolipoprotein B Is an innate barrier against invasive Staphylococcus aureus infection. , 2008, Cell host & microbe.

[43]  S. Kjelleberg,et al.  Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. , 2002, Microbiology.

[44]  E. Greenberg,et al.  Novel Pseudomonas aeruginosa Quorum-Sensing Inhibitors Identified in an Ultra-High-Throughput Screen , 2006, Antimicrobial Agents and Chemotherapy.

[45]  A. Filloux,et al.  Quorum Sensing Negatively Controls Type III Secretion Regulon Expression in Pseudomonas aeruginosa PAO1 , 2005, Journal of bacteriology.

[46]  G. Li,et al.  Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling , 2006, Cellular microbiology.

[47]  E. Pesci,et al.  PqsE Functions Independently of PqsR-Pseudomonas Quinolone Signal and Enhances the rhl Quorum-Sensing System , 2008, Journal of bacteriology.

[48]  M. Willcox,et al.  Determination of quorum-sensing signal molecules and virulence factors of Pseudomonas aeruginosa isolates from contact lens-induced microbial keratitis. , 2002, Journal of medical microbiology.

[49]  S. Kjelleberg,et al.  Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors , 2003, The EMBO journal.

[50]  E. Greenberg,et al.  Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Novick,et al.  Transient interference with staphylococcal quorum sensing blocks abscess formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  E S Kempner,et al.  Aspects of Light Production by Photobacterium fischeri , 1968, Journal of bacteriology.

[53]  T. D. de Kievit Quorum sensing in Pseudomonas aeruginosa biofilms. , 2009, Environmental microbiology.

[54]  G L Kenyon,et al.  Structural identification of autoinducer of Photobacterium fischeri luciferase. , 1981, Biochemistry.

[55]  E. Greenberg,et al.  Iron and Pseudomonas aeruginosa biofilm formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Nicola C. Reading,et al.  The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis , 2009, Proceedings of the National Academy of Sciences.

[57]  M. Schoenfisch,et al.  Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. , 2008, ACS nano.

[58]  S. Diggle,et al.  Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. , 2009, FEMS immunology and medical microbiology.

[59]  F. Fang,et al.  NO inhibitions: antimicrobial properties of nitric oxide. , 1995, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[60]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[61]  M. Herrmann,et al.  Quorum-sensing systems in staphylococci as therapeutic targets , 2007, Analytical and bioanalytical chemistry.

[62]  F. Vandenesch,et al.  The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. , 1995, Molecular & general genetics : MGG.

[63]  Amir Gamliel,et al.  A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ , 2005, Nature.

[64]  T. Muir,et al.  agr receptor mutants reveal distinct modes of inhibition by staphylococcal autoinducing peptides , 2009, Proceedings of the National Academy of Sciences.

[65]  Amy Milsted,et al.  Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. , 2005, Journal of the American Chemical Society.

[66]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes , 1997, Journal of bacteriology.

[67]  M. Givskov,et al.  Silver against Pseudomonas aeruginosa biofilms , 2007, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[68]  M. Kokkinidis,et al.  Conserved features of type III secretion , 2004, Cellular microbiology.

[69]  Kristina M Smith,et al.  Molecular mechanisms of bacterial quorum sensing as a new drug target. , 2003, Current opinion in chemical biology.

[70]  Y. Gov,et al.  Transcriptional Profiling of Target of RNAIII-Activating Protein, a Master Regulator of Staphylococcal Virulence , 2005, Infection and Immunity.

[71]  A. Bitler,et al.  RNAIII inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: structure and function analysis , 2001, Peptides.

[72]  G. Taylor,et al.  Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium , 1988, Infection and immunity.

[73]  D. Hassett,et al.  Involvement of Nitric Oxide in Biofilm Dispersal of Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[74]  E. Greenberg,et al.  Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[75]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[76]  A. Eberhard Inhibition and Activation of Bacterial Luciferase Synthesis , 1972, Journal of bacteriology.

[77]  A. Kharazmi,et al.  Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. , 2001, Microbes and infection.

[78]  Vanessa Sperandio,et al.  Bacteria–host communication: The language of hormones , 2003, Proceedings of the National Academy of Sciences of the United States of America.