Enhancing quantum cryptography with quantum dot single-photon sources

[1]  Jake Iles-Smith,et al.  Tailoring solid-state single-photon sources with stimulated emissions , 2021, Nature Nanotechnology.

[2]  Fengmei M. Liu,et al.  Double-Pulse Generation of Indistinguishable Single Photons with Optically Controlled Polarization. , 2021, Nano letters.

[3]  T. Heindel,et al.  Quantum Communication Using Semiconductor Quantum Dots , 2021, Advanced Quantum Technologies.

[4]  P. Michler,et al.  Thin-film InGaAs metamorphic buffer for telecom C-band InAs quantum dots and optical resonators on GaAs platform , 2021, Nanophotonics.

[5]  P. Michler,et al.  Bright Purcell enhanced single-photon source in the telecom O-band based on a quantum dot in a circular Bragg grating , 2021, 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[6]  J. Fischer,et al.  Resonance fluorescence of single In(Ga)As quantum dots emitting in the telecom C-band , 2021 .

[7]  J. Rarity,et al.  Practical quantum tokens without quantum memories and experimental tests , 2021, npj Quantum Information.

[8]  S. F. Covre da Silva,et al.  Quantum cryptography with highly entangled photons from semiconductor quantum dots , 2020, Science Advances.

[9]  A. Wieck,et al.  A bright and fast source of coherent single photons , 2020, Nature Nanotechnology.

[10]  A. Wieck,et al.  Scalable integrated single-photon source , 2020, Science Advances.

[11]  D. Reiter,et al.  A review on optical excitation of semiconductor quantum dots under the influence of phonons , 2019, Semiconductor Science and Technology.

[12]  Jian-Wei Pan,et al.  Coherently driving a single quantum two-level system with dichromatic laser pulses , 2019, Nature Physics.

[13]  Twin-Field Quantum Key Distribution over 1000 km Fibre , 2019 .

[14]  I. Sagnes,et al.  Generation of non-classical light in a photon-number superposition , 2018, Nature Photonics.

[15]  Samuel H. Knarr,et al.  Introduction to the absolute brightness and number statistics in spontaneous parametric down-conversion , 2018, Journal of Optics.

[16]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[17]  J. F. Dynes,et al.  Overcoming the rate–distance limit of quantum key distribution without quantum repeaters , 2018, Nature.

[18]  Shuo Sun,et al.  Quantum dot single-photon sources with ultra-low multi-photon probability , 2018, npj Quantum Information.

[19]  Luke R. Wilson,et al.  High Purcell factor generation of indistinguishable on-chip single photons , 2017, Nature Nanotechnology.

[20]  V. Zwiller,et al.  On-demand generation of background-free single photons from a solid-state source , 2017, 1712.06937.

[21]  P. Senellart,et al.  High-performance semiconductor quantum-dot single-photon sources. , 2017, Nature nanotechnology.

[22]  J. Vučković,et al.  Pulsed Rabi oscillations in quantum two-level systems: beyond the area theorem , 2017, 1708.05444.

[23]  Iordanis Kerenidis,et al.  Experimental investigation of practical unforgeable quantum money , 2017, 1705.01428.

[24]  V. Zwiller,et al.  Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters , 2017, Nano letters.

[25]  Peter Michler,et al.  Quantum Dots for Quantum Information Technologies , 2017 .

[26]  Y. Arakawa,et al.  Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities , 2016 .

[27]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[28]  Christian Schaffner,et al.  Quantum cryptography beyond quantum key distribution , 2015, Designs, Codes and Cryptography.

[29]  Yasuhiko Arakawa,et al.  Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors , 2015, Scientific Reports.

[30]  B A Bell,et al.  Experimental demonstration of graph-state quantum secret sharing , 2014, Nature Communications.

[31]  Zhu Cao,et al.  Discrete-phase-randomized coherent state source and its application in quantum key distribution , 2014, 1410.3217.

[32]  K. Jöns,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, Nature Photonics.

[33]  E. Diamanti,et al.  Experimental plug and play quantum coin flipping , 2013, Nature Communications.

[34]  Jian-Wei Pan,et al.  On-demand semiconductor single-photon source with near-unity indistinguishability. , 2012, Nature nanotechnology.

[35]  X-Q Zhou,et al.  Experimental realization of Shor's quantum factoring algorithm using qubit recycling , 2011, Nature Photonics.

[36]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.

[37]  Christian Schneider,et al.  Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range , 2012 .

[38]  S. Wehner,et al.  Experimental implementation of bit commitment in the noisy-storage model , 2012, Nature Communications.

[39]  Gilles Brassard,et al.  Experimental loss-tolerant quantum coin flipping , 2011, Nature communications.

[40]  P. J. Clarke,et al.  Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source , 2010, 1004.4754.

[41]  O. Z. Karimov,et al.  Quantum communication using single photons from a semiconductor quantum dot emitting at a telecommunication wavelength , 2009 .

[42]  Xiongfeng Ma Quantum cryptography: theory and practice , 2008 .

[43]  Yasuhiko Arakawa,et al.  An optical horn structure for single-photon source using quantum dots at telecommunication wavelengtha) , 2007 .

[44]  Kyo Inoue,et al.  Secure communication: Quantum cryptography with a photon turnstile , 2002, Nature.

[45]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.