Change detection in non-stationary Hawkes processes through sequential testing
暂无分享,去创建一个
[1] Nicholas A. Heard,et al. Nonparametric self-exciting models for computer network traffic , 2019, Statistics and Computing.
[2] Moinak Bhaduri,et al. A Novel Weak Estimator For Dynamic Systems , 2017, IEEE Access.
[3] Siqi Tan. A statistical model for long-term forecasting of strong sand dust storms , 2014 .
[4] Moinak Bhaduri,et al. Beyond Cumulative Sum Charting in Non-Stationarity Detection and Estimation , 2019, IEEE Access.
[5] Moinak Bhaduri,et al. Using Empirical Recurrence Rates Ratio for Time Series Data Similarity , 2018, IEEE Access.
[6] Asit P. Basu,et al. Statistical Methods for the Reliability of Repairable Systems , 2000 .
[7] Moinak Bhaduri,et al. A Novel Online and Non-Parametric Approach for Drift Detection in Big Data , 2017, IEEE Access.
[8] Moinak Bhaduri,et al. On a novel approach to forecast sparse rare events: applications to Parkfield earthquake prediction , 2015, Natural Hazards.
[9] Nicolas Vayatis,et al. A review of change point detection methods , 2018, ArXiv.
[10] Chih-Hsiang Ho,et al. On a Temporal Investigation of Hurricane Strength and Frequency , 2018, Environmental Modeling & Assessment.
[11] B. Efron. Bootstrap Methods: Another Look at the Jackknife , 1979 .
[12] A. Hawkes. Spectra of some self-exciting and mutually exciting point processes , 1971 .
[13] Moinak Bhaduri,et al. A Quantitative Insight into the Dependence Dynamics of the Kilauea and Mauna Loa Volcanoes, Hawaii , 2017, Mathematical Geosciences.
[14] Douglas M. Hawkins,et al. The Changepoint Model for Statistical Process Control , 2003 .
[15] Moinak Bhaduri,et al. On modifications to the Poisson-triggered hidden Markov paradigm through partitioned empirical recurrence rates ratios and its applications to natural hazards monitoring , 2020, Scientific Reports.