Testing the master constraint programme for loop quantum gravity: IV. Free field theories

This is the fourth paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. We now move on to free field theories with constraints, namely Maxwell theory and linearized gravity. Since the master constraint involves squares of constraint operator valued distributions, one has to be very careful in doing that and we will see that the full flexibility of the master constraint programme must be exploited in order to arrive at sensible results.

[1]  C. Rovelli Quantum gravity , 2004, Scholarpedia.

[2]  F. Gross Interacting Field Theories , 2007 .

[3]  T. Thiemann Modern Canonical Quantum General Relativity: References , 2007 .

[4]  T. Thiemann Quantum spin dynamics: VIII. The master constraint , 2005, gr-qc/0510011.

[5]  T. Thiemann,et al.  Testing the master constraint programme for loop quantum gravity: II. Finite-dimensional systems , 2004, gr-qc/0411139.

[6]  T. Thiemann,et al.  Testing the master constraint programme for loop quantum gravity: V. Interacting field theories , 2004, gr-qc/0411142.

[7]  T. Thiemann The Phoenix Project: master constraint programme for loop quantum gravity , 2003, gr-qc/0305080.

[8]  T. Thiemann,et al.  Testing the master constraint programme for loop quantum gravity: I. General framework , 2004, gr-qc/0411138.

[9]  L. Smolin,et al.  An invitation to loop quantum gravity , 2004, hep-th/0408048.

[10]  A. Ashtekar,et al.  Background independent quantum gravity: A Status report , 2004, gr-qc/0404018.

[11]  T. Thiemann,et al.  Irreducibility of the Ashtekar–Isham–Lewandowski representation , 2003, gr-qc/0303074.

[12]  T. Thiemann,et al.  On the superselection theory of the Weyl algebra for diffeomorphism invariant quantum gauge theories , 2003, gr-qc/0302090.

[13]  J. Lewandowski,et al.  Diffeomorphism covariant representations of the holonomy-flux ⋆-algebra , 2003, gr-qc/0302059.

[14]  T. Thiemann,et al.  Lectures on Loop Quantum Gravity , 2002, gr-qc/0210094.

[15]  H. Sahlmann Some Comments on the Representation Theory of the Algebra Underlying Loop Quantum Gravity , 2002 .

[16]  T. Thiemann,et al.  Towards the QFT on curved spacetime limit of QGR: II. A concrete implementation , 2002, gr-qc/0207031.

[17]  T. Thiemann,et al.  Towards the QFT on curved spacetime limit of QGR: I. A general scheme , 2002, gr-qc/0207030.

[18]  T. Thiemann,et al.  Coherent states for canonical quantum general relativity and the infinite tensor product extension , 2001, gr-qc/0102038.

[19]  J. Klauder,et al.  On the implementation of constraints through projection operators , 2000, quant-ph/0009072.

[20]  T. Thiemann,et al.  Gauge field theory coherent states (GCS): II. Peakedness properties , 2000, hep-th/0005237.

[21]  T. Thiemann,et al.  Gauge field theory coherent states (GCS): IV. Infinite tensor product and thermodynamical limit , 2000, hep-th/0005235.

[22]  T. Thiemann Gauge field theory coherent states (GCS): I. General properties , 2000, hep-th/0005233.

[23]  T. Thiemann,et al.  Gauge field theory coherent states (GCS): III. Ehrenfest theorems , 2000, hep-th/0005234.

[24]  T. Thiemann Quantum spin dynamics (QSD): VII. Symplectic structures and continuum lattice formulations of gauge field theories , 2000, hep-th/0005232.

[25]  T Thiemann,et al.  Gauge field theory coherent states (GCS): II. Peakedness properties , 2001 .

[26]  T Thiemann Quantum spin dynamics (QSD): VII. Symplectic structures and continuum lattice formulations of gauge field theories , 2001 .

[27]  John R. Klauder,et al.  Quantization of Constrained Systems , 2000, hep-th/0003297.

[28]  T. Thiemann,et al.  Gauge Field Theory Coherent States (GCS) : III. , 2000 .

[29]  J. Klauder Universal procedure for enforcing quantum constraints , 1999, hep-th/9901010.

[30]  T. Thiemann Quantum spin dynamics (QSD) V: Quantum Gravity as the natural regulator of the Hamiltonian constraint of matter quantum field theories , 1998 .

[31]  Carlo Rovelli,et al.  Loop Quantum Gravity , 1997, Living reviews in relativity.

[32]  T. Thiemann Kinematical Hilbert Spaces for Fermionic and Higgs Quantum Field Theories , 1997, gr-qc/9705021.

[33]  T. Thiemann,et al.  Quantum spin dynamics (QSD): II. The kernel of the Wheeler - DeWitt constraint operator , 1996, gr-qc/9606090.

[34]  T. Thiemann Quantum Spin Dynamics (QSD) , 1996, gr-qc/9606089.

[35]  T Thiemann Quantum spin dynamics (QSD): III. Quantum constraint algebra and physical scalar product in quantum general relativity , 1998 .

[36]  T Thiemann Quantum spin dynamics (QSD): II. The kernel of the Wheeler - DeWitt constraint operator , 1998 .

[37]  T. Thiemann QSD V : Quantum Gravity as the Natural Regulator of Matter Quantum Field Theories , 1997, gr-qc/9705019.

[38]  T. Thiemann QSD III : Quantum Constraint Algebra and Physical Scalar Product in Quantum General Relativity , 1997, gr-qc/9705017.

[39]  T. Thiemann,et al.  Quantum spin dynamics (QSD): VI. Quantum Poincaré algebra and a quantum positivity of energy theorem for canonical quantum gravity , 1997, gr-qc/9705020.

[40]  T. Thiemann Quantum spin dynamics (QSD): IV. ? Euclidean quantum gravity as a model to test ? Lorentzian quantum gravity , 1997, gr-qc/9705018.

[41]  T. Thiemann Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity , 1996, gr-qc/9606088.

[42]  A. Ashtekar,et al.  Quantization of diffeomorphism invariant theories of connections with local degrees of freedom , 1995, gr-qc/9504018.

[43]  T. Thiemann Generalized boundary conditions for general relativity for the asymptotically flat case in terms of Ashtekar's variables , 1993, gr-qc/9310039.

[44]  T Thiemann Generalized boundary conditions for general relativity for the asymptotically flat case in terms of Ashtekar's variables , 1995 .

[45]  A. Ashtekar,et al.  WEAK FIELD LIMIT OF GENERAL RELATIVITY IN TERMS OF NEW VARIABLES: A HAMILTONIAN FRAMEWORK , 1994 .

[46]  Rovelli,et al.  Gravitons and loops. , 1991, Physical review. D, Particles and fields.

[47]  Jerrold E. Marsden,et al.  Properties of infinite dimensional Hamiltonian systems , 1974 .