Integrating and querying taxonomies with quest in the presence of conflicts

We present the QUery-driven Exploration of Semistructured dataand meta-data with conflicTs and partial knowledge (QUEST) system for supporting the integration of scientific data and taxonomies in the presence of misalignments and conflicts. QUEST relies on a novel constraint-based data model that captures both value and structural conflicts and enables researchers to observe and resolve such misalignments in the integrated data by considering the context provided by the data requirements of given research questions.

[1]  Pedro M. Domingos,et al.  Learning Source Description for Data Integration , 2000, WebDB.

[2]  Keith W. Kintigh,et al.  The Promise and Challenge of Archaeological Data Integration , 2005, American Antiquity.

[3]  Tok Wang Ling,et al.  A Data Model for Semistructured Data with Partial and Inconsistent Information , 2000, EDBT.

[4]  Laura M. Haas,et al.  Schema Mapping as Query Discovery , 2000, VLDB.

[5]  K. Selçuk Candan,et al.  FICSR: feedback-based inconsistency resolution and query processing on misaligned data sources , 2007, SIGMOD '07.

[6]  K. Selçuk Candan,et al.  QUEST: QUery-driven Exploration of Semistructured Data with ConflicTs and Partial Knowledge , 2006, CleanDB.

[7]  Luigi Palopoli,et al.  An automatic technique for detecting type conflicts in database schemes , 1998, CIKM '98.

[8]  Jong Wook Kim,et al.  Discovering mappings in hierarchical data from multiple sources using the inherent structure , 2006, Knowledge and Information Systems.

[9]  Jong Wook Kim,et al.  CP/CV: concept similarity mining without frequency information from domain describing taxonomies , 2006, CIKM '06.

[10]  Jennifer Widom,et al.  ULDBs: databases with uncertainty and lineage , 2006, VLDB.

[11]  Maurizio Vincini,et al.  Synthesizing an Integrated Ontology , 2003, IEEE Internet Comput..

[12]  Zachary G. Ives,et al.  Reconciling while tolerating disagreement in collaborative data sharing , 2006, SIGMOD Conference.

[13]  Tova Milo,et al.  Using Schema Matching to Simplify Heterogeneous Data Translation , 1998, VLDB.

[14]  Erhard Rahm,et al.  Generic Schema Matching with Cupid , 2001, VLDB.

[15]  Tomasz Imielinski,et al.  Incomplete Information in Relational Databases , 1984, JACM.

[16]  Martin L. Kersten,et al.  A Graph-Oriented Model for Articulation of Ontology Interdependencies , 1999, EDBT.